Agent adapt ontologies to agree on decision taking
Date: 20200623 (Yasser Bourahla)
Hypothesis: ['Success rate converges to 1', ' Improve the average accuracy at the end of the experiment', ' Agents do not necessarily converge to the same ontology', '']
10 runs; 40000 games
Experimental setting: Agents learn decision trees (transformed into ontologies); get income from environment; adapt by splitting their leaf nodes
independent variables: ['numberOfAgents', 'numberOfFeatures', 'numberOfClasses', 'ratio', 'sampleRatio']
dependent variables: ['ssrate', 'accuracy', 'distance']
Date: 20200623 (Yasser Bourahla)
LazyLavender hash: 4b837b2619086143a5bbb798ac0b80b110f80342
Link to lazylavender
Parameter file: params.sh
Executed command (script.sh):
BEWARE: REPRODUCING THE ANALYSIS TAKES A CONSIDERABLE AMOUNT OF TIME.
#!/bin/bash
. params.sh
CURRDIR=$(pwd)
OUTPUT=${CURRDIR}/${DIRPREF}
# cd ${LLPATH}
cd lazylav
# this sample runs ExperimentalPlan. It can be replaced with Monitor if parameters are not varied.
bash scripts/runexp.sh -p ${CURRDIR} -d ${DIRPREF} java -Dlog.level=INFO -cp ${JPATH} fr.inria.exmo.lazylavender.engine.ExperimentalPlan -Dexperiment=fr.inria.exmo.lazylavender.decisiontaking.Experiment ${OPT} -DresultDir=${OUTPUT}
The independent variables have been varied as follows:
Three hypotheses are tested:
hypothesis 1 verified
We check if there is a significant difference between the starting average accuracy and the final average accuracy.
There is a significant difference in the accuracy between the start and the end of the experiment. Paired t-test results: t=-100.06 and p<0.01. Hypothesis 2 verified.
the percentage of final none zero distances to all distances is : 90.78 % hypothesis 3 verified.
proportion of runs having end accuracy lower than start accuracy to all runs is 0.035. Table contains number of runs in which the accuracy dropped by each factor value and its proportion to all runs having that value:
number of agents | number of features | number of classes | training ratio | task ratio | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 5 | 10 | 20 | 40 | 3 | 4 | 5 | 2 | 3 | 4 | 0.1 | 0.3 | 0.5 | 0.2 | 0.4 | 0.6 | 0.8 | |
nb runs drop | 141 | 44 | 4 | 0 | 0 | 50 | 74 | 65 | 49 | 64 | 76 | 57 | 61 | 71 | 84 | 52 | 40 | 13 |
proportion to rest | 0.04 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.00 |
number of runs in which accuracy drops by number of agents(columns) and task ratio(rows):
2 | 5 | 10 | 20 | 40 | |
---|---|---|---|---|---|
0.20 | 53 | 29 | 2 | 0 | 0 |
0.40 | 43 | 9 | 0 | 0 | 0 |
0.60 | 32 | 6 | 2 | 0 | 0 |
0.80 | 13 | 0 | 0 | 0 | 0 |
Summary of results by factor values
number of agents | number of features | number of classes | training ratio | task ratio | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 5 | 10 | 20 | 40 | 3 | 4 | 5 | 2 | 3 | 4 | 0.1 | 0.3 | 0.5 | 0.2 | 0.4 | 0.6 | 0.8 | ||
ssrate | 1 | 0.47 | 0.48 | 0.51 | 0.46 | 0.47 | 0.50 | 0.47 | 0.47 | 0.58 | 0.48 | 0.37 | 0.43 | 0.47 | 0.54 | 0.47 | 0.47 | 0.48 | 0.50 |
10000 | 1.00 | 0.96 | 0.86 | 0.74 | 0.65 | 0.91 | 0.84 | 0.77 | 0.89 | 0.83 | 0.80 | 0.87 | 0.81 | 0.84 | 0.82 | 0.83 | 0.85 | 0.86 | |
20000 | 1.00 | 0.98 | 0.91 | 0.81 | 0.71 | 0.94 | 0.89 | 0.81 | 0.92 | 0.88 | 0.85 | 0.90 | 0.86 | 0.88 | 0.86 | 0.88 | 0.89 | 0.90 | |
30000 | 1.00 | 0.99 | 0.94 | 0.85 | 0.75 | 0.96 | 0.91 | 0.84 | 0.94 | 0.90 | 0.88 | 0.92 | 0.89 | 0.91 | 0.88 | 0.90 | 0.91 | 0.92 | |
100000 | 1.00 | 1.00 | 0.98 | 0.94 | 0.87 | 0.99 | 0.97 | 0.92 | 0.97 | 0.96 | 0.94 | 0.96 | 0.95 | 0.96 | 0.94 | 0.96 | 0.96 | 0.97 | |
400000 | 1.00 | 1.00 | 1.00 | 0.99 | 0.96 | 1.00 | 0.99 | 0.98 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.99 | |
accuracy | 1 | 0.57 | 0.56 | 0.56 | 0.56 | 0.56 | 0.58 | 0.56 | 0.56 | 0.66 | 0.54 | 0.49 | 0.45 | 0.56 | 0.68 | 0.56 | 0.56 | 0.56 | 0.57 |
10000 | 0.61 | 0.70 | 0.77 | 0.77 | 0.73 | 0.76 | 0.72 | 0.66 | 0.79 | 0.70 | 0.65 | 0.58 | 0.73 | 0.83 | 0.67 | 0.71 | 0.72 | 0.75 | |
20000 | 0.61 | 0.70 | 0.79 | 0.82 | 0.79 | 0.78 | 0.75 | 0.70 | 0.81 | 0.73 | 0.69 | 0.59 | 0.77 | 0.86 | 0.70 | 0.74 | 0.75 | 0.78 | |
30000 | 0.61 | 0.70 | 0.80 | 0.84 | 0.83 | 0.78 | 0.76 | 0.72 | 0.82 | 0.74 | 0.70 | 0.61 | 0.78 | 0.87 | 0.71 | 0.75 | 0.77 | 0.79 | |
100000 | 0.61 | 0.70 | 0.80 | 0.88 | 0.92 | 0.79 | 0.78 | 0.77 | 0.84 | 0.77 | 0.74 | 0.63 | 0.82 | 0.90 | 0.75 | 0.78 | 0.79 | 0.81 | |
400000 | 0.61 | 0.70 | 0.80 | 0.88 | 0.94 | 0.79 | 0.78 | 0.79 | 0.84 | 0.77 | 0.74 | 0.64 | 0.82 | 0.90 | 0.76 | 0.78 | 0.79 | 0.81 | |
distance | 1 | 0.56 | 0.61 | 0.62 | 0.62 | 0.61 | 0.43 | 0.61 | 0.77 | 0.58 | 0.61 | 0.62 | 0.39 | 0.69 | 0.73 | 0.61 | 0.60 | 0.60 | 0.60 |
10000 | 0.47 | 0.47 | 0.48 | 0.55 | 0.65 | 0.34 | 0.53 | 0.70 | 0.54 | 0.52 | 0.50 | 0.41 | 0.58 | 0.58 | 0.52 | 0.52 | 0.53 | 0.52 | |
20000 | 0.47 | 0.47 | 0.47 | 0.49 | 0.57 | 0.33 | 0.50 | 0.65 | 0.52 | 0.49 | 0.47 | 0.38 | 0.55 | 0.55 | 0.49 | 0.49 | 0.50 | 0.50 | |
30000 | 0.47 | 0.47 | 0.47 | 0.48 | 0.53 | 0.33 | 0.49 | 0.63 | 0.51 | 0.48 | 0.46 | 0.37 | 0.53 | 0.54 | 0.47 | 0.48 | 0.49 | 0.49 | |
100000 | 0.47 | 0.47 | 0.47 | 0.47 | 0.48 | 0.33 | 0.49 | 0.60 | 0.50 | 0.47 | 0.44 | 0.35 | 0.52 | 0.54 | 0.46 | 0.47 | 0.48 | 0.48 | |
400000 | 0.47 | 0.47 | 0.47 | 0.47 | 0.48 | 0.33 | 0.49 | 0.60 | 0.50 | 0.47 | 0.44 | 0.35 | 0.52 | 0.54 | 0.46 | 0.47 | 0.48 | 0.48 |
ANOVA is applied to determine which factors significantly influence which measures
PR(>F) | Significance | |
---|---|---|
ssrate | 0.000000 | True |
accuracy | 0.000000 | True |
distance | 0.475119 | False |
PR(>F) | Significance | |
---|---|---|
ssrate | 0.000000 | True |
accuracy | 0.407979 | False |
distance | 0.000000 | True |
PR(>F) | Significance | |
---|---|---|
ssrate | 0.000000 | True |
accuracy | 0.000000 | True |
distance | 0.000000 | True |
PR(>F) | Significance | |
---|---|---|
ssrate | 0.000000 | True |
accuracy | 0.000000 | True |
distance | 0.000000 | True |
PR(>F) | Significance | |
---|---|---|
ssrate | 0.000000 | True |
accuracy | 0.000000 | True |
distance | 0.002343 | True |
For each dependent variable: Print it's ANOVA table (1) and for each independent variable: print it's post-hoc test table using the Tukey-hsd (honestly significant difference) test.
ANOVA table is organised in columns where each column concerns one independent variable as follows:
Parameter | df | sum_sq | mean_sq | F | PR(>F) |
---|---|---|---|---|---|
independent variable | Degrees of freedom | Sum of squares | sum_sq/df | F statistic value | P-value |
For each independent variable a post-hoc table is printed. Post-hoc table is also organised in columns. Each column contains the comparison of two possible values of the independent variable.
group 1 | group 2 | mean-diff | p-adj | lower | upper | reject |
---|---|---|---|---|---|---|
Possible value of the independent variable | A different possible value of the independent variable | pairwise mean difference | adjusted p-value | lower bound of confidence interval for pairwise mean differences | upper bound of confidence interval for pairwise mean differences | p-adj < 0.05 |
*********************************************************** FULL STATISTICAL RESULTS *********************************************************** *********************************************************** ANOVA results for ssrate ***********************************************************
df | sum_sq | mean_sq | F | PR(>F) | |
---|---|---|---|---|---|
C(Q("numberOfAgents")) | 4.00 | 1.05 | 0.26 | 6,900.48 | 0.00 |
C(Q("numberOfFeatures")) | 2.00 | 0.38 | 0.19 | 5,051.74 | 0.00 |
C(Q("numberOfClasses")) | 2.00 | 0.07 | 0.03 | 916.55 | 0.00 |
C(Q("ratio")) | 2.00 | 0.01 | 0.01 | 133.69 | 0.00 |
C(Q("sampleRatio")) | 3.00 | 0.06 | 0.02 | 552.26 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")) | 8.00 | 0.58 | 0.07 | 1,901.96 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfClasses")) | 8.00 | 0.11 | 0.01 | 361.79 | 0.00 |
C(Q("numberOfFeatures")):C(Q("numberOfClasses")) | 4.00 | 0.04 | 0.01 | 276.87 | 0.00 |
C(Q("numberOfAgents")):C(Q("ratio")) | 8.00 | 0.04 | 0.00 | 125.49 | 0.00 |
C(Q("numberOfFeatures")):C(Q("ratio")) | 4.00 | 0.01 | 0.00 | 53.76 | 0.00 |
C(Q("numberOfClasses")):C(Q("ratio")) | 4.00 | 0.01 | 0.00 | 33.20 | 0.00 |
C(Q("numberOfAgents")):C(Q("sampleRatio")) | 12.00 | 0.12 | 0.01 | 263.73 | 0.00 |
C(Q("numberOfFeatures")):C(Q("sampleRatio")) | 6.00 | 0.03 | 0.01 | 135.26 | 0.00 |
C(Q("numberOfClasses")):C(Q("sampleRatio")) | 6.00 | 0.01 | 0.00 | 22.99 | 0.00 |
C(Q("ratio")):C(Q("sampleRatio")) | 6.00 | 0.00 | 0.00 | 3.64 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("numberOfClasses")) | 16.00 | 0.07 | 0.00 | 109.28 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("ratio")) | 16.00 | 0.02 | 0.00 | 41.14 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfClasses")):C(Q("ratio")) | 16.00 | 0.01 | 0.00 | 21.83 | 0.00 |
C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("ratio")) | 8.00 | 0.00 | 0.00 | 11.38 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("sampleRatio")) | 24.00 | 0.06 | 0.00 | 70.74 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfClasses")):C(Q("sampleRatio")) | 24.00 | 0.01 | 0.00 | 11.10 | 0.00 |
C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("sampleRatio")) | 12.00 | 0.00 | 0.00 | 6.68 | 0.00 |
C(Q("numberOfAgents")):C(Q("ratio")):C(Q("sampleRatio")) | 24.00 | 0.01 | 0.00 | 7.61 | 0.00 |
C(Q("numberOfFeatures")):C(Q("ratio")):C(Q("sampleRatio")) | 12.00 | 0.00 | 0.00 | 5.33 | 0.00 |
C(Q("numberOfClasses")):C(Q("ratio")):C(Q("sampleRatio")) | 12.00 | 0.00 | 0.00 | 2.52 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("ratio")) | 32.00 | 0.01 | 0.00 | 6.32 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("sampleRatio")) | 48.00 | 0.01 | 0.00 | 3.94 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("ratio")):C(Q("sampleRatio")) | 48.00 | 0.01 | 0.00 | 5.40 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfClasses")):C(Q("ratio")):C(Q("sampleRatio")) | 48.00 | 0.00 | 0.00 | 2.07 | 0.00 |
C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("ratio")):C(Q("sampleRatio")) | 24.00 | 0.00 | 0.00 | 2.29 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("ratio")):C(Q("sampleRatio")) | 96.00 | 0.01 | 0.00 | 2.02 | 0.00 |
Residual | 4,860.00 | 0.18 | 0.00 | nan | nan |
-------------------------------------- post-hoc (Tukey) test for numberOfAgents on ssrate --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 10 | 2 | 0.00 | 0.00 | 0.00 | 0.01 | True |
1 | 10 | 20 | -0.01 | 0.00 | -0.01 | -0.01 | True |
2 | 10 | 40 | -0.03 | 0.00 | -0.04 | -0.03 | True |
3 | 10 | 5 | 0.00 | 0.00 | 0.00 | 0.01 | True |
4 | 2 | 20 | -0.01 | 0.00 | -0.02 | -0.01 | True |
5 | 2 | 40 | -0.04 | 0.00 | -0.04 | -0.04 | True |
6 | 2 | 5 | -0.00 | 0.74 | -0.00 | 0.00 | False |
7 | 20 | 40 | -0.02 | 0.00 | -0.02 | -0.02 | True |
8 | 20 | 5 | 0.01 | 0.00 | 0.01 | 0.02 | True |
9 | 40 | 5 | 0.04 | 0.00 | 0.03 | 0.04 | True |
-------------------------------------- post-hoc (Tukey) test for numberOfFeatures on ssrate --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 3 | 4 | -0.01 | 0.00 | -0.01 | -0.00 | True |
1 | 3 | 5 | -0.02 | 0.00 | -0.02 | -0.02 | True |
2 | 4 | 5 | -0.01 | 0.00 | -0.02 | -0.01 | True |
-------------------------------------- post-hoc (Tukey) test for numberOfClasses on ssrate --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 2 | 3 | -0.01 | 0.00 | -0.01 | -0.00 | True |
1 | 2 | 4 | -0.01 | 0.00 | -0.01 | -0.01 | True |
2 | 3 | 4 | -0.00 | 0.00 | -0.01 | -0.00 | True |
-------------------------------------- post-hoc (Tukey) test for ratio on ssrate --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 0.1 | 0.3 | -0.00 | 0.23 | -0.00 | 0.00 | False |
1 | 0.1 | 0.5 | 0.00 | 0.02 | 0.00 | 0.00 | True |
2 | 0.3 | 0.5 | 0.00 | 0.00 | 0.00 | 0.01 | True |
-------------------------------------- post-hoc (Tukey) test for sampleRatio on ssrate --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 0.2 | 0.4 | 0.01 | 0.00 | 0.00 | 0.01 | True |
1 | 0.2 | 0.6 | 0.01 | 0.00 | 0.01 | 0.01 | True |
2 | 0.2 | 0.8 | 0.01 | 0.00 | 0.01 | 0.01 | True |
3 | 0.4 | 0.6 | 0.00 | 0.02 | 0.00 | 0.00 | True |
4 | 0.4 | 0.8 | 0.00 | 0.00 | 0.00 | 0.01 | True |
5 | 0.6 | 0.8 | 0.00 | 0.51 | -0.00 | 0.00 | False |
*********************************************************** ANOVA results for accuracy ***********************************************************
df | sum_sq | mean_sq | F | PR(>F) | |
---|---|---|---|---|---|
C(Q("numberOfAgents")) | 4.00 | 79.84 | 19.96 | 2,419.34 | 0.00 |
C(Q("numberOfFeatures")) | 2.00 | 0.02 | 0.01 | 1.16 | 0.31 |
C(Q("numberOfClasses")) | 2.00 | 8.66 | 4.33 | 524.74 | 0.00 |
C(Q("ratio")) | 2.00 | 65.50 | 32.75 | 3,969.63 | 0.00 |
C(Q("sampleRatio")) | 3.00 | 1.81 | 0.60 | 73.28 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")) | 8.00 | 0.94 | 0.12 | 14.18 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfClasses")) | 8.00 | 2.93 | 0.37 | 44.36 | 0.00 |
C(Q("numberOfFeatures")):C(Q("numberOfClasses")) | 4.00 | 0.00 | 0.00 | 0.14 | 0.97 |
C(Q("numberOfAgents")):C(Q("ratio")) | 8.00 | 4.35 | 0.54 | 65.88 | 0.00 |
C(Q("numberOfFeatures")):C(Q("ratio")) | 4.00 | 0.79 | 0.20 | 23.87 | 0.00 |
C(Q("numberOfClasses")):C(Q("ratio")) | 4.00 | 2.14 | 0.53 | 64.71 | 0.00 |
C(Q("numberOfAgents")):C(Q("sampleRatio")) | 12.00 | 0.63 | 0.05 | 6.34 | 0.00 |
C(Q("numberOfFeatures")):C(Q("sampleRatio")) | 6.00 | 0.09 | 0.02 | 1.90 | 0.08 |
C(Q("numberOfClasses")):C(Q("sampleRatio")) | 6.00 | 0.26 | 0.04 | 5.18 | 0.00 |
C(Q("ratio")):C(Q("sampleRatio")) | 6.00 | 0.21 | 0.03 | 4.23 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("numberOfClasses")) | 16.00 | 0.11 | 0.01 | 0.85 | 0.63 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("ratio")) | 16.00 | 0.85 | 0.05 | 6.43 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfClasses")):C(Q("ratio")) | 16.00 | 0.22 | 0.01 | 1.65 | 0.05 |
C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("ratio")) | 8.00 | 0.09 | 0.01 | 1.42 | 0.18 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("sampleRatio")) | 24.00 | 0.18 | 0.01 | 0.92 | 0.58 |
C(Q("numberOfAgents")):C(Q("numberOfClasses")):C(Q("sampleRatio")) | 24.00 | 0.18 | 0.01 | 0.91 | 0.60 |
C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("sampleRatio")) | 12.00 | 0.22 | 0.02 | 2.17 | 0.01 |
C(Q("numberOfAgents")):C(Q("ratio")):C(Q("sampleRatio")) | 24.00 | 0.19 | 0.01 | 0.98 | 0.49 |
C(Q("numberOfFeatures")):C(Q("ratio")):C(Q("sampleRatio")) | 12.00 | 0.03 | 0.00 | 0.26 | 0.99 |
C(Q("numberOfClasses")):C(Q("ratio")):C(Q("sampleRatio")) | 12.00 | 0.13 | 0.01 | 1.35 | 0.18 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("ratio")) | 32.00 | 0.28 | 0.01 | 1.06 | 0.38 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("sampleRatio")) | 48.00 | 0.51 | 0.01 | 1.28 | 0.09 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("ratio")):C(Q("sampleRatio")) | 48.00 | 0.48 | 0.01 | 1.22 | 0.14 |
C(Q("numberOfAgents")):C(Q("numberOfClasses")):C(Q("ratio")):C(Q("sampleRatio")) | 48.00 | 0.49 | 0.01 | 1.24 | 0.12 |
C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("ratio")):C(Q("sampleRatio")) | 24.00 | 0.15 | 0.01 | 0.78 | 0.77 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("ratio")):C(Q("sampleRatio")) | 96.00 | 0.83 | 0.01 | 1.05 | 0.36 |
Residual | 4,860.00 | 40.09 | 0.01 | nan | nan |
-------------------------------------- post-hoc (Tukey) test for numberOfAgents on accuracy --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 10 | 2 | -0.19 | 0.00 | -0.21 | -0.17 | True |
1 | 10 | 20 | 0.08 | 0.00 | 0.06 | 0.10 | True |
2 | 10 | 40 | 0.14 | 0.00 | 0.13 | 0.16 | True |
3 | 10 | 5 | -0.10 | 0.00 | -0.12 | -0.08 | True |
4 | 2 | 20 | 0.28 | 0.00 | 0.26 | 0.29 | True |
5 | 2 | 40 | 0.34 | 0.00 | 0.32 | 0.36 | True |
6 | 2 | 5 | 0.09 | 0.00 | 0.08 | 0.11 | True |
7 | 20 | 40 | 0.06 | 0.00 | 0.04 | 0.08 | True |
8 | 20 | 5 | -0.18 | 0.00 | -0.20 | -0.16 | True |
9 | 40 | 5 | -0.24 | 0.00 | -0.26 | -0.23 | True |
-------------------------------------- post-hoc (Tukey) test for numberOfFeatures on accuracy --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 3 | 4 | -0.00 | 0.85 | -0.02 | 0.01 | False |
1 | 3 | 5 | 0.00 | 0.90 | -0.01 | 0.02 | False |
2 | 4 | 5 | 0.00 | 0.76 | -0.01 | 0.02 | False |
-------------------------------------- post-hoc (Tukey) test for numberOfClasses on accuracy --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 2 | 3 | -0.07 | 0.00 | -0.08 | -0.05 | True |
1 | 2 | 4 | -0.10 | 0.00 | -0.11 | -0.08 | True |
2 | 3 | 4 | -0.03 | 0.00 | -0.04 | -0.01 | True |
-------------------------------------- post-hoc (Tukey) test for ratio on accuracy --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 0.1 | 0.3 | 0.18 | 0.00 | 0.17 | 0.20 | True |
1 | 0.1 | 0.5 | 0.26 | 0.00 | 0.25 | 0.28 | True |
2 | 0.3 | 0.5 | 0.08 | 0.00 | 0.07 | 0.09 | True |
-------------------------------------- post-hoc (Tukey) test for sampleRatio on accuracy --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 0.2 | 0.4 | 0.02 | 0.01 | 0.01 | 0.04 | True |
1 | 0.2 | 0.6 | 0.03 | 0.00 | 0.01 | 0.05 | True |
2 | 0.2 | 0.8 | 0.05 | 0.00 | 0.03 | 0.07 | True |
3 | 0.4 | 0.6 | 0.01 | 0.69 | -0.01 | 0.03 | False |
4 | 0.4 | 0.8 | 0.03 | 0.00 | 0.01 | 0.05 | True |
5 | 0.6 | 0.8 | 0.02 | 0.08 | -0.00 | 0.04 | False |
*********************************************************** ANOVA results for distance ***********************************************************
df | sum_sq | mean_sq | F | PR(>F) | |
---|---|---|---|---|---|
C(Q("numberOfAgents")) | 4.00 | 0.11 | 0.03 | 1.07 | 0.37 |
C(Q("numberOfFeatures")) | 2.00 | 65.73 | 32.86 | 1,319.89 | 0.00 |
C(Q("numberOfClasses")) | 2.00 | 2.87 | 1.44 | 57.68 | 0.00 |
C(Q("ratio")) | 2.00 | 37.17 | 18.58 | 746.38 | 0.00 |
C(Q("sampleRatio")) | 3.00 | 0.44 | 0.15 | 5.85 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")) | 8.00 | 5.73 | 0.72 | 28.75 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfClasses")) | 8.00 | 1.83 | 0.23 | 9.20 | 0.00 |
C(Q("numberOfFeatures")):C(Q("numberOfClasses")) | 4.00 | 0.55 | 0.14 | 5.53 | 0.00 |
C(Q("numberOfAgents")):C(Q("ratio")) | 8.00 | 11.35 | 1.42 | 56.99 | 0.00 |
C(Q("numberOfFeatures")):C(Q("ratio")) | 4.00 | 5.29 | 1.32 | 53.16 | 0.00 |
C(Q("numberOfClasses")):C(Q("ratio")) | 4.00 | 1.40 | 0.35 | 14.09 | 0.00 |
C(Q("numberOfAgents")):C(Q("sampleRatio")) | 12.00 | 0.94 | 0.08 | 3.16 | 0.00 |
C(Q("numberOfFeatures")):C(Q("sampleRatio")) | 6.00 | 0.08 | 0.01 | 0.52 | 0.79 |
C(Q("numberOfClasses")):C(Q("sampleRatio")) | 6.00 | 0.18 | 0.03 | 1.22 | 0.29 |
C(Q("ratio")):C(Q("sampleRatio")) | 6.00 | 0.24 | 0.04 | 1.61 | 0.14 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("numberOfClasses")) | 16.00 | 0.40 | 0.02 | 1.00 | 0.45 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("ratio")) | 16.00 | 3.20 | 0.20 | 8.04 | 0.00 |
C(Q("numberOfAgents")):C(Q("numberOfClasses")):C(Q("ratio")) | 16.00 | 0.56 | 0.03 | 1.40 | 0.13 |
C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("ratio")) | 8.00 | 0.33 | 0.04 | 1.67 | 0.10 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("sampleRatio")) | 24.00 | 0.76 | 0.03 | 1.27 | 0.17 |
C(Q("numberOfAgents")):C(Q("numberOfClasses")):C(Q("sampleRatio")) | 24.00 | 0.30 | 0.01 | 0.50 | 0.98 |
C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("sampleRatio")) | 12.00 | 0.43 | 0.04 | 1.45 | 0.14 |
C(Q("numberOfAgents")):C(Q("ratio")):C(Q("sampleRatio")) | 24.00 | 0.11 | 0.00 | 0.18 | 1.00 |
C(Q("numberOfFeatures")):C(Q("ratio")):C(Q("sampleRatio")) | 12.00 | 0.15 | 0.01 | 0.52 | 0.91 |
C(Q("numberOfClasses")):C(Q("ratio")):C(Q("sampleRatio")) | 12.00 | 0.11 | 0.01 | 0.35 | 0.98 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("ratio")) | 32.00 | 1.36 | 0.04 | 1.71 | 0.01 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("sampleRatio")) | 48.00 | 1.64 | 0.03 | 1.38 | 0.04 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("ratio")):C(Q("sampleRatio")) | 48.00 | 1.36 | 0.03 | 1.14 | 0.23 |
C(Q("numberOfAgents")):C(Q("numberOfClasses")):C(Q("ratio")):C(Q("sampleRatio")) | 48.00 | 0.63 | 0.01 | 0.53 | 1.00 |
C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("ratio")):C(Q("sampleRatio")) | 24.00 | 0.70 | 0.03 | 1.17 | 0.26 |
C(Q("numberOfAgents")):C(Q("numberOfFeatures")):C(Q("numberOfClasses")):C(Q("ratio")):C(Q("sampleRatio")) | 96.00 | 1.91 | 0.02 | 0.80 | 0.92 |
Residual | 4,860.00 | 121.01 | 0.02 | nan | nan |
-------------------------------------- post-hoc (Tukey) test for numberOfAgents on distance --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 10 | 2 | 0.00 | 0.90 | -0.03 | 0.03 | False |
1 | 10 | 20 | 0.00 | 0.90 | -0.02 | 0.03 | False |
2 | 10 | 40 | 0.01 | 0.69 | -0.01 | 0.04 | False |
3 | 10 | 5 | 0.01 | 0.90 | -0.02 | 0.03 | False |
4 | 2 | 20 | 0.00 | 0.90 | -0.02 | 0.03 | False |
5 | 2 | 40 | 0.01 | 0.73 | -0.01 | 0.04 | False |
6 | 2 | 5 | 0.01 | 0.90 | -0.02 | 0.03 | False |
7 | 20 | 40 | 0.01 | 0.83 | -0.02 | 0.04 | False |
8 | 20 | 5 | 0.00 | 0.90 | -0.02 | 0.03 | False |
9 | 40 | 5 | -0.01 | 0.90 | -0.03 | 0.02 | False |
-------------------------------------- post-hoc (Tukey) test for numberOfFeatures on distance --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 3 | 4 | 0.16 | 0.00 | 0.14 | 0.17 | True |
1 | 3 | 5 | 0.27 | 0.00 | 0.25 | 0.28 | True |
2 | 4 | 5 | 0.11 | 0.00 | 0.09 | 0.12 | True |
-------------------------------------- post-hoc (Tukey) test for numberOfClasses on distance --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 2 | 3 | -0.03 | 0.00 | -0.05 | -0.01 | True |
1 | 2 | 4 | -0.06 | 0.00 | -0.07 | -0.04 | True |
2 | 3 | 4 | -0.03 | 0.00 | -0.04 | -0.01 | True |
-------------------------------------- post-hoc (Tukey) test for ratio on distance --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 0.1 | 0.3 | 0.17 | 0.00 | 0.15 | 0.18 | True |
1 | 0.1 | 0.5 | 0.18 | 0.00 | 0.17 | 0.20 | True |
2 | 0.3 | 0.5 | 0.01 | 0.11 | -0.00 | 0.03 | False |
-------------------------------------- post-hoc (Tukey) test for sampleRatio on distance --------------------------------------
group1 | group2 | meandiff | p-adj | lower | upper | reject | |
---|---|---|---|---|---|---|---|
0 | 0.2 | 0.4 | 0.01 | 0.60 | -0.01 | 0.03 | False |
1 | 0.2 | 0.6 | 0.02 | 0.08 | -0.00 | 0.04 | False |
2 | 0.2 | 0.8 | 0.02 | 0.04 | 0.00 | 0.04 | True |
3 | 0.4 | 0.6 | 0.01 | 0.62 | -0.01 | 0.03 | False |
4 | 0.4 | 0.8 | 0.01 | 0.50 | -0.01 | 0.03 | False |
5 | 0.6 | 0.8 | 0.00 | 0.90 | -0.02 | 0.02 | False |
lattice of parameter influence on ssrate:
lattice of parameter influence on accuracy:
lattice of parameter influence on distance: