Experiment 20180531-NOOR

Starting with a realistic alignment size improves the final size (hence recall and F-measure)

Experiment design

DockerOS DockerEXP

Date: 20180723

Hypotheses: Starting with a realistic alignment size improves the final size (hence recall and F-measure)

Variation of: 20180307-NOOR

4 agents; 10 runs; 10000 games

Adaptation operators: delete replace refine add addjoin refadd

Experimental setting: Same as [[20180307-NOOR]] replaying the same runs as [[20180308-NOOR]] (with different initial alignments) and after fixing addjoin, expansion and real size estimation.

Variables

controled variables: ['revisionModality', 'expandAlignments', 'nonRedundancy', 'immediateRatio']

dependent variables: ['srate', 'size', 'inc', 'prec', 'fmeas', 'rec', 'conv']

Experiment

Date: 20180723

Performer: Jérôme Euzenat (INRIA)

Lazy lavender hash: d50e70f87bca76951ec2f149dc8ae1d42b9a1a28

Classpath: lib/lazylav/ll.jar:lib/slf4j/logback-classic-1.2.3.jar:lib/slf4j/logback-core-1.2.3.jar:.

OS: stretch

Parameter file: params.sh

Executed command (script.sh):

#!/bin/bash

for op in ${OPS}
do
   bash scripts/runexp.sh -d 4-10000-${op}-real java -Dlog.level=INFO -cp ${JPATH} fr.inria.exmo.lazylavender.engine.Monitor ${OPT} ${LOADOPT} -DrevisionModality=${op}
   bash scripts/runexp.sh -d 4-10000-${op}-im80-real java -Dlog.level=INFO -cp ${JPATH} fr.inria.exmo.lazylavender.engine.Monitor ${OPT} ${LOADOPT} -DrevisionModality=${op} -DimmediateRatio=80
   bash scripts/runexp.sh -d 4-10000-${op}-clever-nr-real java -Dlog.level=INFO -cp ${JPATH} fr.inria.exmo.lazylavender.engine.Monitor ${OPT} ${LOADOPT} -DrevisionModality=${op} -DexpandAlignments=clever -DnonRedundancy
   bash scripts/runexp.sh -d 4-10000-${op}-clever-nr-im80-real java -Dlog.level=INFO -cp ${JPATH} fr.inria.exmo.lazylavender.engine.Monitor ${OPT} ${LOADOPT} -DrevisionModality=${op} -DexpandAlignments=clever -DnonRedundancy -DimmediateRatio=80

done

exit

Class used: NOOEnvironment, AlignmentAdjustingAgent, AlignmentRevisionExperiment, ActionLogger, AverageLogger, Monitor

Execution environment: Debian Linux virtual machine configured with four processors and 20GB of RAM running under a Dell PowerEdge T610 with 4*Intel Xeon Quad Core 1.9GHz E5-2420 processors, under Linux ProxMox 2 (Debian). - Java 1.8.0 HotSpot

Raw results

results/
  4-10000-delete-im80-real.tsv
  4-10000-add-clever-nr-im80-real.tsv
  4-10000-refadd-im80-real.txt
  4-10000-replace-clever-nr-im80-real.txt
  4-10000-add-real.tsv
  4-10000-add-clever-nr-im80-real.txt
  4-10000-refadd-clever-nr-real.tsv
  4-10000-delete-real.txt
  4-10000-refine-clever-nr-im80-real.txt
  4-10000-replace-clever-nr-real.txt
  4-10000-refadd-im80-real.tsv
  4-10000-refine-real.txt
  4-10000-replace-im80-real.tsv
  4-10000-addjoin-im80-real.txt
  4-10000-refadd-real.txt
  4-10000-delete-real.tsv
  4-10000-refine-clever-nr-real.tsv
  4-10000-refadd-real.tsv
  4-10000-refine-im80-real.txt
  4-10000-delete-clever-nr-real.tsv
  4-10000-refadd-clever-nr-im80-real.tsv
  4-10000-replace-clever-nr-real.tsv
  4-10000-addjoin-clever-nr-im80-real.tsv
  4-10000-nothing.tsv
  4-10000-refine-real.tsv
  4-10000-add-im80-real.tsv
  4-10000-replace-real.txt
  4-10000-addjoin-im80-real.tsv
  4-10000-add-clever-nr-real.tsv
  4-10000-addjoin-real.txt
  4-10000-addjoin-clever-nr-im80-real.txt
  4-10000-replace-real.tsv
  4-10000-refine-clever-nr-real.txt
  4-10000-delete-im80-real.txt
  4-10000-addjoin-clever-nr-real.tsv
  4-10000-refine-im80-real.tsv
  4-10000-add-real.txt
  4-10000-add-im80-real.txt
  4-10000-addjoin-clever-nr-real.txt
  4-10000-delete-clever-nr-im80-real.txt
  4-10000-delete-clever-nr-im80-real.tsv
  4-10000-replace-clever-nr-im80-real.tsv
  4-10000-refadd-clever-nr-im80-real.txt
  4-10000-replace-im80-real.txt
  4-10000-add-clever-nr-real.txt
  4-10000-refine-clever-nr-im80-real.tsv
  4-10000-delete-clever-nr-real.txt
  4-10000-nothing.txt
  4-10000-refadd-clever-nr-real.txt
  4-10000-addjoin-real.tsv

Analysis

Systematic comparison of realistic (plain) with plain (20180308-NOOR), clever-nr (20180529-NOOR), im80 (20180311-NOOR) and clever-nr-im80 (20180530-NOOR) (all dashed):

Relaxation Expansion Operator Success rate Size Incoherence Semantic precision Semantic F-measure Semantic recall Convergence
0 0 nothing 0.70 92 0.35 0.25 0.39 0.89 1
0 0 delete 0.99 26 0.06 0.91 0.33 0.20 1030
0 0 replace 0.99 26 0.06 0.91 0.33 0.20 1030
0 0 refine 0.99 34 0.06 0.92 0.46 0.31 1030
0 0 add 0.99 49 0.19 0.78 0.59 0.48 1198
0 0 addjoin 0.99 49 0.19 0.78 0.59 0.48 958
0 0 refadd 0.99 63 0.19 0.78 0.70 0.64 958
0 1 delete 0.98 47 0.13 0.82 0.56 0.42 2039
0 1 replace 0.98 44 0.13 0.84 0.54 0.39 1078
0 1 refine 0.98 54 0.14 0.82 0.64 0.52 2681
0 1 add 0.98 79 0.25 0.71 0.73 0.75 2064
0 1 addjoin 0.99 79 0.24 0.72 0.74 0.75 1517
0 1 refadd 0.99 87 0.26 0.70 0.76 0.84 1154
1 0 delete 0.99 23 0.00 1.00 0.26 0.15 1659
1 0 replace 0.99 23 0.00 1.00 0.26 0.15 1648
1 0 refine 0.99 33 0.00 1.00 0.41 0.26 1659
1 0 add 0.99 40 0.00 1.00 0.46 0.30 5642
1 0 addjoin 0.99 40 0.00 1.00 0.46 0.30 3635
1 0 refadd 0.99 60 0.00 1.00 0.69 0.52 3256
1 1 delete 0.98 37 0.00 1.00 0.41 0.26 1104
1 1 replace 0.98 37 0.00 1.00 0.42 0.26 2078
1 1 refine 0.98 47 0.00 1.00 0.56 0.39 2887
1 1 add 0.97 66 0.00 1.00 0.68 0.52 8959
1 1 addjoin 0.98 65 0.00 1.00 0.68 0.51 8338
1 1 refadd 0.98 82 0.00 1.00 0.83 0.71 7733

Discussion

Analyst: Jérôme Euzenat (INRIA) (2018-08-16)

Key points

  • The realistic alignments obtained tend to have a higher size
  • They seem to converge faster
  • They indeed obtain better results:
    • Precision reaches 100% when used with relaxation
    • Recall and F-measure seems to be at least higher (2 points exception for refadd may be attributed to randomness)

All this is comparable to the results obtained in 20180307-NOOR.

Further experiments

  • Would be interesting to see what happens with the generative modality

This file can be retrieved from URL https://sake.re/20180531-NOOR

It is possible to check out the repository by cloning https://felapton.inrialpes.fr/cakes/20180531-NOOR.git

This experiment has been transferred from its initial location at https://gforge.inria.fr (not available any more)

The original, unaltered associated zip file can be obtained from https://files.inria.fr/sakere/gforge/20180531-NOOR.zip

See original markdown (20180531-NOOR.md) or HTML (20180531-NOOR.html) files.