Experiment 20180827-NOOR

The generative modality starting with empty networks is on par with random networks
2019-12-07: This experiment does not allow to conclude

Experiment design

DockerOS DockerEXP

Date: 20180827

Designer: Jérôme Euzenat (INRIA)

Hypotheses: Starting from scratch and generating correspondences when needed should not be different from starting with initial alignments

Variation of: 20170531-NOOR

4 agents; 10 runs; 10000 games

Adaptation operators: delete replace refine add addjoin refadd

Experimental setting: Same as [[20170531-NOOR]] replaying the same runs as [[20180308-NOOR]] and after fixing addjoin and expansion.

Variables

controled variables: ['revisionModality', 'immediateRatio']

dependent variables: ['srate', 'size', 'inc', 'prec', 'fmeas', 'rec', 'conv']

Experiment

Date: 20180827

Performer: Jérôme Euzenat (INRIA)

Lazy lavender hash: 759ff097b96520c12aa84f3749927f9a22022e62

Classpath: lib/lazylav/ll.jar:lib/slf4j/logback-classic-1.2.3.jar:lib/slf4j/logback-core-1.2.3.jar:.

OS: stretch

Parameter file: params.sh

Executed command (script.sh):

#!/bin/bash

. params.sh

for op in ${OPS}
do
   bash scripts/runexp.sh -p ${OUTPUT} -d ${DIRPREF}-${op}-clever-nr-${POSTFIX} java -Dlog.level=INFO -cp ${JPATH} fr.inria.exmo.lazylavender.engine.Monitor ${OPT} ${LOADOPT} -DrevisionModality=${op} -DexpandAlignments=clever -DnonRedundancy -Dgenerative -DstartEmpty
   bash scripts/runexp.sh -p ${OUTPUT} -d ${DIRPREF}-${op}-clever-nr-im80-${POSTFIX} java -Dlog.level=INFO -cp ${JPATH} fr.inria.exmo.lazylavender.engine.Monitor ${OPT} ${LOADOPT} -DrevisionModality=${op} -DexpandAlignments=clever -DnonRedundancy -DimmediateRatio=80 -Dgenerative -DstartEmpty
done

Class used: NOOEnvironment, AlignmentAdjustingAgent, AlignmentRevisionExperiment, ActionLogger, AverageLogger, Monitor

Execution environment: 24 * Intel(R) Xeon(R) CPU E5-2420 0 @ 1.90GHz with 20GB RAM / Linux ProxMox 2 / Linux 4.15.17-1-pve / Java Java(TM) SE Runtime Environment 1.8.0_151 with 4.33G max heap size

Input: Input required for reproducibility can be retrieved from: https://files.inria.fr/sakere/input/expeRun.zip or DOI Then unzip expeRun.zip -d input

Raw results

Analysis

Results are compared to that of 20180601-NOOR (in dashed) which uses the same configurations of parameters but start with random (non realistic) alignments.

Relaxation Operator Success rate Size Incoherence Semantic precision Semantic F-measure Semantic recall Convergence
0 delete 0.94 72 0.13 0.85 0.70 0.60 9899
0 replace 0.94 72 0.14 0.83 0.70 0.61 9817
0 refine 0.94 78 0.16 0.82 0.76 0.70 9888
0 add 0.93 83 0.15 0.82 0.76 0.72 9666
0 addjoin 0.96 80 0.13 0.84 0.75 0.68 9951
0 refadd 0.94 81 0.15 0.81 0.78 0.76 9315
1 delete 0.94 61 0.00 1.00 0.61 0.44 9910
1 replace 0.94 63 0.00 1.00 0.65 0.48 9781
1 refine 0.94 74 0.00 1.00 0.78 0.64 8250
1 add 0.93 77 0.00 1.00 0.77 0.63 9233
1 addjoin 0.95 77 0.00 1.00 0.78 0.64 7848
1 refadd 0.94 80 0.00 1.00 0.82 0.69 7318

Discussion

Analyst: Jérôme Euzenat (INRIA) (2018-08-28)

Key points

  • The results are remarkably similar to those of 20170531-NOOR
  • Looking at the curves and figures, they are not necessarily that close to 20180601-NOOR.

Further experiments

  • Maybe starting with a realistic size of network

This file can be retrieved from URL https://sake.re/20180827-NOOR

It is possible to check out the repository by cloning https://felapton.inrialpes.fr/cakes/20180827-NOOR.git

This experiment has been transferred from its initial location at https://gforge.inria.fr (not available any more)

The original, unaltered associated zip file can be obtained from https://files.inria.fr/sakere/gforge/20180827-NOOR.zip

See original markdown (20180827-NOOR.md) or HTML (20180827-NOOR.html) files.