20180828-NOOR

2018-11-09:reimplemented a different implentation of strenghening (see 20181109-NOOR)

Experiment design

Designer: Iris Lohja (INRIA) (2018-06-01)

Revision of networks of ontologies with most specific strengthening (4 agents; 10 runs; 10000 games; delete/replace/refine/add/addjoin/refadd)

Hypotheses: Strengthening (most specific in this case) improves recall over expansion

Experimental setting: Same as 20180601-NOOR replaying the same runs as 20180308-NOOR with most specific strengthening.

Experiment

Experimenter: Jérôme Euzenat (INRIA) (2018-08-28)

Date: 2018-08-28

Lazy lavender hash: 759ff097b96520c12aa84f3749927f9a22022e62

Classpath: lib/lazylav/ll.jar:lib/slf4j/logback-classic-1.2.3.jar:lib/slf4j/logback-core-1.2.3.jar:.

OS: stretch

Variation of: 20180601-NOOR

Parameters: params.sh

Command line (script.sh):

. params.sh

OUTPUT=${OUTPUT}${LABEL}

for op in ${OPS}
do
  bash scripts/runexp.sh -p ${OUTPUT} -d ${DIRPREF}-${op}-${postfix} java -Dlog.level=INFO -cp ${JPATH} fr.inria.exmo.lazylavender.engine.Monitor ${OPT} ${LOADOPT} -DrevisionModality=${op} ${PARAMS}
  bash scripts/runexp.sh -p ${OUTPUT} -d ${DIRPREF}-${op}-clever-nr-${postfix} java -Dlog.level=INFO -cp ${JPATH} fr.inria.exmo.lazylavender.engine.Monitor ${OPT} ${LOADOPT} -DrevisionModality=${op} -DexpandAlignments=clever -DnonRedundancy ${PARAMS}
  bash scripts/runexp.sh -p ${OUTPUT} -d ${DIRPREF}-${op}-im80-${postfix} java -Dlog.level=INFO -cp ${JPATH} fr.inria.exmo.lazylavender.engine.Monitor ${OPT} ${LOADOPT} -DrevisionModality=${op} -DimmediateRatio=80 ${PARAMS}
  bash scripts/runexp.sh -p ${OUTPUT} -d ${DIRPREF}-${op}-clever-nr-im80-${postfix} java -Dlog.level=INFO -cp ${JPATH} fr.inria.exmo.lazylavender.engine.Monitor ${OPT} ${LOADOPT} -DrevisionModality=${op} -DexpandAlignments=clever -DnonRedundancy -DimmediateRatio=80 ${PARAMS}
  bash scripts/runexp.sh -p ${OUTPUT} -d ${DIRPREF}-${op}-clever-nr-im80-gen-${postfix} java -Dlog.level=INFO -cp ${JPATH} fr.inria.exmo.lazylavender.engine.Monitor ${OPT} ${LOADOPT} -DrevisionModality=${op} -DexpandAlignments=clever -DnonRedundancy -DimmediateRatio=80 -Dgenerative ${PARAMS}
  bash scripts/runexp.sh -p ${OUTPUT} -d ${DIRPREF}-${op}-clever-nr-im80-gen-empty-${postfix} java -Dlog.level=INFO -cp ${JPATH} fr.inria.exmo.lazylavender.engine.Monitor ${OPT} ${LOADOPT} -DrevisionModality=${op} -DexpandAlignments=clever -DnonRedundancy -DimmediateRatio=80 -Dgenerative -DstartEmpty ${PARAMS}
done

Class used: NOOEnvironment, AlignmentAdjustingAgent, AlignmentRevisionExperiment, ActionLogger, AverageLogger, Monitor

Execution environment: 24 * Intel(R) Xeon(R) CPU E5-2420 0 @ 1.90GHz with 20GB RAM / Linux ProxMox 2 / Linux 4.15.17-1-pve / Java Java(TM) SE Runtime Environment 1.8.0_151 with 4.33G max heap size

Note: These experiments are an independent rerun of Iris Lohja (INRIA)'s MSc thesis experiments 1-6. The tables and plots above cover these results and confirm them. Hence the analysis is conform to hers.

Input: Input required for reproducibility can be retrieved from: https://files.inria.fr/sakere/input/expeRun.zip Then unzip expeRun.zip -d input

Raw results

4-10000-add-clever-nr-im80-gen-empty-strspc.tsv 4-10000-add-clever-nr-im80-gen-empty-strspc.txt 4-10000-add-clever-nr-im80-gen-strspc.tsv 4-10000-add-clever-nr-im80-gen-strspc.txt 4-10000-add-clever-nr-im80-strspc.tsv 4-10000-add-clever-nr-im80-strspc.txt 4-10000-add-clever-nr-strspc.tsv 4-10000-add-clever-nr-strspc.txt 4-10000-add-im80-strspc.tsv 4-10000-add-im80-strspc.txt 4-10000-add-strspc.tsv 4-10000-add-strspc.txt 4-10000-addjoin-clever-nr-im80-gen-empty-strspc.tsv 4-10000-addjoin-clever-nr-im80-gen-empty-strspc.txt 4-10000-addjoin-clever-nr-im80-gen-strspc.tsv 4-10000-addjoin-clever-nr-im80-gen-strspc.txt 4-10000-addjoin-clever-nr-im80-strspc.tsv 4-10000-addjoin-clever-nr-im80-strspc.txt 4-10000-addjoin-clever-nr-strspc.tsv 4-10000-addjoin-clever-nr-strspc.txt 4-10000-addjoin-im80-strspc.tsv 4-10000-addjoin-im80-strspc.txt 4-10000-addjoin-strspc.tsv 4-10000-addjoin-strspc.txt 4-10000-delete-clever-nr-im80-gen-empty-strspc.tsv 4-10000-delete-clever-nr-im80-gen-empty-strspc.txt 4-10000-delete-clever-nr-im80-gen-strspc.tsv 4-10000-delete-clever-nr-im80-gen-strspc.txt 4-10000-delete-clever-nr-im80-strspc.tsv 4-10000-delete-clever-nr-im80-strspc.txt 4-10000-delete-clever-nr-strspc.tsv 4-10000-delete-clever-nr-strspc.txt 4-10000-delete-im80-strspc.tsv 4-10000-delete-im80-strspc.txt 4-10000-delete-strspc.tsv 4-10000-delete-strspc.txt 4-10000-refadd-clever-nr-im80-gen-empty-strspc.tsv 4-10000-refadd-clever-nr-im80-gen-empty-strspc.txt 4-10000-refadd-clever-nr-im80-gen-strspc.tsv 4-10000-refadd-clever-nr-im80-gen-strspc.txt 4-10000-refadd-clever-nr-im80-strspc.tsv 4-10000-refadd-clever-nr-im80-strspc.txt 4-10000-refadd-clever-nr-strspc.tsv 4-10000-refadd-clever-nr-strspc.txt 4-10000-refadd-im80-strspc.tsv 4-10000-refadd-im80-strspc.txt 4-10000-refadd-strspc.tsv 4-10000-refadd-strspc.txt 4-10000-refine-clever-nr-im80-gen-empty-strspc.tsv 4-10000-refine-clever-nr-im80-gen-empty-strspc.txt 4-10000-refine-clever-nr-im80-gen-strspc.tsv 4-10000-refine-clever-nr-im80-gen-strspc.txt 4-10000-refine-clever-nr-im80-strspc.tsv 4-10000-refine-clever-nr-im80-strspc.txt 4-10000-refine-clever-nr-strspc.tsv 4-10000-refine-clever-nr-strspc.txt 4-10000-refine-im80-strspc.tsv 4-10000-refine-im80-strspc.txt 4-10000-refine-strspc.tsv 4-10000-refine-strspc.txt 4-10000-replace-clever-nr-im80-gen-empty-strspc.tsv 4-10000-replace-clever-nr-im80-gen-empty-strspc.txt 4-10000-replace-clever-nr-im80-gen-strspc.tsv 4-10000-replace-clever-nr-im80-gen-strspc.txt 4-10000-replace-clever-nr-im80-strspc.tsv 4-10000-replace-clever-nr-im80-strspc.txt 4-10000-replace-clever-nr-strspc.tsv 4-10000-replace-clever-nr-strspc.txt 4-10000-replace-im80-strspc.tsv 4-10000-replace-im80-strspc.txt 4-10000-replace-strspc.tsv 4-10000-replace-strspc.txt

Result exploration

Here are the results of this experiment for all configurations, they correspond to Table 1-5 of Iris Lohja (INRIA)'s dissertation (the last one was not reproduced there).

test success
rate
network
size
incoherence
degree
semantic
precision
semantic
F-measure
semantic
recall
maximum
convergence
strenghen=specific (compare to 20180308-NOOR)
delete 1.00 6 0.00 1.00 0.13 0.07 789
replace 0.99 6 0.00 1.00 0.13 0.07 1224
refine 0.99 6 0.00 1.00 0.13 0.07 1224
add 0.97 28 0.14 0.81 0.50 0.36 3192
addjoin 0.98 28 0.14 0.81 0.50 0.36 2391
refadd 0.97 45 0.25 0.71 0.66 0.61 3132
expansion + strenghen=specific (compare to 20180529-NOOR)
delete 0.98 6 0.00 1.00 0.13 0.07 1909
replace 0.97 6 0.00 1.00 0.13 0.07 2020
refine 0.96 6 0.00 1.00 0.13 0.07 3062
add 0.93 54 0.28 0.68 0.68 0.68 5769
addjoin 0.96 52 0.29 0.66 0.66 0.66 2875
refadd 0.95 68 0.34 0.63 0.72 0.85 4216
relaxation + strenghen=specific (compare to 20180311-NOOR)
delete 1.00 6 0.00 1.00 0.13 0.07 789
replace 0.99 6 0.00 1.00 0.13 0.07 1224
refine 0.99 6 0.00 1.00 0.13 0.07 1224
add 0.97 23 0.00 1.00 0.43 0.28 4301
addjoin 0.98 24 0.00 1.00 0.44 0.28 4904
refadd 0.97 50 0.00 1.00 0.74 0.59 9060
expansion + relaxation + strenghen=specific (compare to 20180530-NOOR)
delete 0.98 6 0.00 1.00 0.13 0.07 1752
replace 0.97 6 0.00 1.00 0.13 0.07 2212
refine 0.95 6 0.00 1.00 0.13 0.07 3753
add 0.92 44 0.00 1.00 0.69 0.52 9275
addjoin 0.96 44 0.00 1.00 0.68 0.52 6210
refadd 0.93 79 0.00 1.00 0.96 0.92 9060
expansion + generation + relaxation + strenghen=specific (compare to 20180601-NOOR)
delete 0.90 56 0.00 1.00 0.70 0.54 8720
replace 0.89 56 0.00 1.00 0.71 0.55 8669
refine 0.87 57 0.00 1.00 0.71 0.55 7553
add 0.87 64 0.00 1.00 0.86 0.75 9926
addjoin 0.92 69 0.00 1.00 0.90 0.81 8095
refadd 0.92 84 0.00 1.00 0.99 0.98 9901
expansion + generation + empty + relaxation + strenghen=specific (compare to 20180827-NOOR)
delete 0.89 65 0.00 1.00 0.72 0.56 8658
replace 0.89 65 0.00 1.00 0.74 0.59 8912
refine 0.86 65 0.00 1.00 0.74 0.59 9161
add 0.88 74 0.00 0.99 0.88 0.79 9876
addjoin 0.93 75 0.00 1.00 0.90 0.81 8338
refadd 0.92 86 0.00 1.00 0.97 0.93 8553

Each plot compares a measure for most specific strengthening (plain) with one without it (dashed). The data source for the corresponding dashed curves is the one indicated in the tables above

Since the goal of strengthening is to increase recall, we first display the effect of recall in all runs:

In the following, we compare on the two specific runs highlighting the effect of generation over expansion. The upper plot is for the expansion and relaxation modalities, the lower one with expansion, generation and relaxation.

Analysis

Analyst: Jérôme Euzenat (INRIA) (2018-09-13)

Key points:

Further experiments:


This file can be retrieved from URL https://sake.re/20180828-NOOR

It is possible to check out the repository by cloning https://felapton.inrialpes.fr/cakes/20180828-NOOR.git

This experiment has been transferred from its initial location at https://gforge.inria.fr (not available any more)

The original, unaltered associated zip file can be obtained from https://files.inria.fr/sakere/gforge/20180828-NOOR.zip