Experiment 20241211-BROD

Experiment design

Date: 2025-01-14

Designer: Hiro KATAOKA (University of Tsukuba)

Hypotheses: Echo chambers are reinforced with opinions-beliefs interactions and fixed threshould for beliefs

100 agents; 1 runs; 500 games

Variables

fixed variables: WORKFLOW TOPIC ATOM DELTA PACTIVE PREWRITE NBITERATIONS NBAGENTS NBRUNS ALPHA MU REWRITE PREHOC

controled variables: EPSILONS SEEDS INITS VALUES

dependent variables: mdo mdb ngo ngb ano anb

Values

EPSILONS: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
SEEDS: 15596 61362 11884 22766 45114
INITS: 1439 19602 578
VALUES: a b

Measures

Before verifing each hypotheses, we define the measures needed to check them. These measures are the same as 20241209-BROD and 20241210-bROD.

mdo (Maximal Distance between Opinions)

This measure shows the maximal distance between opinions: $$ \max_{a,a'\in A}|O_a-O_{a'}| $$ or equivalently, $$ \max_a O_a - \min_{a'} O_{a'}. $$

Intuitively, the more mdo is, the more polarized agents' opinions are.

mdb (Maximal Distance between Beliefs)

This measure shows the maximal distance between beliefs: $$ \max_{a,a'\in A}d(B_a,B_{a'}) $$ where $d$ is the Hamming distance between the sets of models $m$: $$ d(B,B')=|\{m;m\models B\oplus m\models B\}|, $$ with $\oplus$ as the exclusive or.

Intuitively, the more mdb is, the more polarized agents' beliefs are.

ngo (Number of Groups based on Opinions)

This measure shows the number of groups of agents based on opinions.

The $i$-th group $G_i$ is a nonempty subset of $A$ such that $G_i\cap G_j=\emptyset$ if $i\neq j$. Each $G_i$ can be defined by performing hierarchial clustering with complete linkage: two clusters $C$ and $C'$ are merged iff $$\max_{a\in C,a'\in C'}|O_a-O_{a'}|\leq 0.1$$

Intuitively, the more ngo is, the more polarized agents' opinions are.

ngb (Number of Groups based on Beliefs)

This measure shows the number of groups of agents based on opinions.

The $i$-th group $G_i$ is a nonempty subset of $A$ such that $G_i\cap G_j=\emptyset$ if $i\neq j$. Each $G_i$ can be defined as the maximal subset of $A$ such that all members share the same beliefs, i.e., $$ \forall i,\forall a,a'\in G_i,B_a\equiv B_{a'}. $$ Or equivalently, this measure can be calculated by $|\{B_a;a\in A\}|$.

Intuitively, the more ngb is, the more polarized agents' beliefs are.

ano (Average number of Neighbors over Opinions-based groups)

This measure shows the average number of neighbors in another communities. Let $G_1,\ldots,G_n$ be the groups based on opinions. Let $E(\subseteq A\times A)$ be the set of edges in the network agents form. Then, this measure is defined as follows: $$ \frac{1}{n}|\{(a,a')\in E; \exists ij.a\in G_i,a'\in G_j,i\neq j\}|. $$

Intuitively, the less ano is, the more segregated the network is.

anb (Average number of Neighbors over Beliefs-based groups)

This measure shows the average number of neighbors in another communities. Let $G_1,\ldots,G_n$ be the groups based on beliefs. Let $E(\subseteq A\times A)$ be the set of edges in the network agents form. Then, this measure is defined as follows: $$ \frac{1}{n}|\{(a,a')\in E; \exists ij.a\in G_i,a'\in G_j,i\neq j\}|. $$

Intuitively, the less anb is, the more segregated the network is.

Experiment

Date: 2025-01-14

Performer: Hiro KATAOKA (University of Tsukuba)

The whole experiment, from scratch, can be executed through:

In principle, this could be generated from command line through:

# only once, not checked in
$ bash utils/clone.sh 

# depends on ${HASH}, if it does not change, no need to recompile
# to compile a further version use 'last' as argument
$ bash utils/compile.sh

# generate the templates
$ bash utils/genTemplate.sh

# Perform experiments
$ bash script.sh

# The analysis is done through jupyter
$ jupyter notebook &
# Do not forget to trust the notebook

# Before commiting the notebook
$ nb-clean -e notebook.ipynb

# suppresses results and experiments
$ bash utils/cleanup.sh

# bash utils/anonymize.sh

Parameter file: params.sh

Executed command (script.sh):

#!/bin/bash

. params.sh

set -u
mkdir -p ${RESDIR}

# run

date > ${RESDIR}/log.txt

for init in ${INITS}
do
for eps in ${EPSILONS}
do
for seed in ${SEEDS}
do
for value in ${VALUES}
do
EXP=${init}-${eps}-${seed}-${value}
mkdir -p ${RESDIR}/${EXP}

echo ${EXP}
${SIMDIR}/soba --seed ${seed} --dir "${RESDIR}/${EXP}" --nbAgent ${NBAGENTS} \
    --tick ${NBITERATIONS} --atoms ${ATOM} --update ${WORKFLOW} \
    --prehoc "${PREHOC}" --mu "${MU}" --alpha "${ALPHA}" --rewrite ${REWRITE} \
    --pUnfollow "${PREWRITE}" --pActive "${PACTIVE}" --epsilon "${eps}"  \
	--delta ${DELTA} \
    --network """`cat ${TEMPLATEDIR}/graph-${init}.json`""" \
    --beliefs """`cat ${TEMPLATEDIR}/beliefs-${init}.json`""" \
    --opinions """`cat ${TEMPLATEDIR}/opinions-${init}.json`""" \
    --values """`cat ${TEMPLATEDIR}/val-${value}.json`""" \
    --topics "${TOPIC}"
done
done
done
done

date >> ${RESDIR}/log.txt

# analyse

Hardware: AMD EPYC 7302P, Memory 128GB

OS: Ubuntu 22.04.5 LTS x86_64

Nim version: 2.2.0

Simulator version: 747763f895c41497a0f7066177762ba2d7cb93ff

Duration and Output

  • Duration: 58 minutes
  • Output: 487 MB

Raw results

results/
  log.txt
results/1439-0.05-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.05-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.05-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.05-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.05-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.05-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.05-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.05-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.05-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.05-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.1-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.1-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.1-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.1-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.1-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.1-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.1-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.1-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.1-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.1-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.15-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.15-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.15-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.15-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.15-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.15-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.15-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.15-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.15-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.15-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.2-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.2-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.2-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.2-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.2-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.2-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.2-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.2-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.2-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.2-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.25-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.25-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.25-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.25-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.25-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.25-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.25-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.25-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.25-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.25-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.3-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.3-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.3-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.3-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.3-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.3-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.3-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.3-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.3-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.3-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.35-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.35-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.35-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.35-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.35-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.35-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.35-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.35-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.35-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.35-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.4-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.4-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.4-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.4-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.4-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.4-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.4-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.4-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.4-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.4-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.45-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.45-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.45-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.45-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.45-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.45-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.45-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.45-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.45-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.45-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.5-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.5-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.5-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.5-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.5-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.5-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.5-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.5-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.5-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-0.5-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.05-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.05-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.05-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.05-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.05-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.05-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.05-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.05-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.05-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.05-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.1-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.1-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.1-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.1-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.1-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.1-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.1-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.1-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.1-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.1-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.15-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.15-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.15-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.15-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.15-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.15-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.15-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.15-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.15-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.15-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.2-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.2-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.2-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.2-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.2-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.2-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.2-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.2-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.2-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.2-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.25-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.25-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.25-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.25-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.25-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.25-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.25-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.25-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.25-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.25-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.3-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.3-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.3-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.3-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.3-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.3-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.3-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.3-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.3-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.3-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.35-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.35-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.35-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.35-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.35-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.35-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.35-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.35-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.35-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.35-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.4-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.4-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.4-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.4-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.4-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.4-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.4-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.4-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.4-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.4-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.45-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.45-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.45-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.45-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.45-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.45-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.45-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.45-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.45-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.45-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.5-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.5-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.5-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.5-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.5-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.5-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.5-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.5-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.5-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-0.5-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.05-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.05-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.05-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.05-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.05-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.05-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.05-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.05-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.05-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.05-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.1-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.1-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.1-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.1-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.1-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.1-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.1-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.1-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.1-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.1-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.15-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.15-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.15-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.15-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.15-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.15-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.15-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.15-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.15-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.15-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.2-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.2-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.2-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.2-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.2-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.2-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.2-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.2-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.2-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.2-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.25-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.25-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.25-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.25-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.25-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.25-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.25-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.25-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.25-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.25-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.3-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.3-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.3-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.3-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.3-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.3-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.3-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.3-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.3-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.3-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.35-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.35-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.35-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.35-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.35-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.35-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.35-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.35-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.35-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.35-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.4-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.4-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.4-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.4-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.4-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.4-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.4-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.4-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.4-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.4-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.45-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.45-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.45-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.45-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.45-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.45-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.45-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.45-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.45-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.45-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.5-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.5-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.5-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.5-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.5-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.5-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.5-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.5-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.5-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-0.5-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv

Analysis

Before showing plots, we read all data and calculate measures.

Out[16]:
init eps seed value mdo ngo ano mdb ngb anb
1439-0.05-15596-a 1439 0.05 15596 a 0.714286 6 5.666667 4 11 3.363636
1439-0.05-15596-b 1439 0.05 15596 b 0.714286 6 9.0 8 13 4.307692
1439-0.05-61362-a 1439 0.05 61362 a 0.714286 6 6.666667 5 12 3.5
1439-0.05-61362-b 1439 0.05 61362 b 0.714286 7 7.857143 8 13 4.384615
1439-0.05-11884-a 1439 0.05 11884 a 0.714286 6 6.166667 8 13 3.307692
... ... ... ... ... ... ... ... ... ... ...
578-0.5-11884-b 578 0.5 11884 b 0.714286 2 1.5 2 2 1.5
578-0.5-22766-a 578 0.5 22766 a 0.642857 3 1.666667 6 3 1.666667
578-0.5-22766-b 578 0.5 22766 b 0.571429 3 2.0 5 3 2.0
578-0.5-45114-a 578 0.5 45114 a 0.642857 3 3.333333 6 3 3.333333
578-0.5-45114-b 578 0.5 45114 b 0.642857 2 1.5 4 2 1.5

300 rows × 10 columns

Results from this experiment ($\delta=4$) are compared with them from the experiment for H0 (20241209-BROD, $\delta=8$).

We use $0.01$ as the significance level.

The effect of $\varepsilon$ on mdo

Out[23]:
min mean std max
eps
0.05 0.714286 0.714286 2.555364e-10 0.714286
0.10 0.571409 0.699999 4.359153e-02 0.714286
0.15 0.428571 0.67619 7.200099e-02 0.714286
0.20 0.571393 0.680951 6.145689e-02 0.714286
0.25 0.428571 0.652378 8.119200e-02 0.714286
0.30 0.357143 0.611111 1.006923e-01 0.714286
0.35 0.5713 0.633329 7.200479e-02 0.714286
0.40 0.5 0.652246 7.451953e-02 0.714286
0.45 0.0 0.603796 1.373873e-01 0.714286
0.50 0.42582 0.63994 6.872224e-02 0.714286
No description has been provided for this image

The standard deviation is quite larger than H0. Moreover, even if $\varepsilon$ becomes larger, mdo does not decrease drastically.

For smaller $\varepsilon$, mdo is smaller than it from H0 because opinions less than $0.2$ have disappeared after the first $15$ interactions because no beliefs support such lower opinions.

The two plots below are generated from the experiment 1439-0.1-15596-a:

No description has been provided for this image
No description has been provided for this image

For the middle $\varepsilon$, there can be some communities. For example, when $0.25$ is used for $\varepsilon$ instead of $0.1$, the evolution of opinions and the final network will be as follows:

No description has been provided for this image
No description has been provided for this image

For larger $\varepsilon$, agents' opinions are either about $0.3$ or $1.0$. This is because of the beliefs: it is very unlikely that a belief $B$ supports the opinion $1.0$ ($B$ should be $10000000$).

For example, when $\varepsilon=0.4$:

No description has been provided for this image
No description has been provided for this image

Increasing $\varepsilon$ helps to merge communities.

These points can be observed in the experiments with different cultural values $V_b$.

$\varepsilon=0.1$

No description has been provided for this image
No description has been provided for this image

$\varepsilon=0.25$

No description has been provided for this image
No description has been provided for this image

$\varepsilon=0.4$

No description has been provided for this image
No description has been provided for this image

Statistical test: H0 and H2

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
H2 0.653663 0.0 True
H0 0.796638 0.0 True

The table above shows that mdo from experiments for H2 and H0 follow normal distributions. Thus we can perform the paired $t$-test to see the difference between the two data.

Result from the paired $t$-test

statistic pvalue df significant?
H0 and H2 13.095677 0.0 299 True

Yes, we see the significance difference.

Statistical test: $V_a$ and $V_b$

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va 0.676532 0.0 True
Vb 0.612805 0.0 True

Result from the paired $t$-test

statistic pvalue df significant?
Va and Vb -3.646598 0.000367 149 True

Here, changing values has significant effect on mdo!

We perform the same analysis for each $\delta$.

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.05 0.284134 0.0 True
Vb, eps=0.05 0.284134 0.0 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.1 0.499476 0.000003 True
Vb, eps=0.1 0.455805 0.000002 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.15 0.763582 0.001301 True
Vb, eps=0.15 0.284134 0.0 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.2 0.630395 0.000049 True
Vb, eps=0.2 0.284134 0.0 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.25 0.76143 0.001226 True
Vb, eps=0.25 0.560898 0.000011 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.3 0.797903 0.003456 True
Vb, eps=0.3 0.825219 0.007892 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.35 0.499791 0.000004 True
Vb, eps=0.35 0.603427 0.000027 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.4 0.649757 0.000076 True
Vb, eps=0.4 0.675267 0.000137 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.45 0.670737 0.000123 True
Vb, eps=0.45 0.756409 0.001069 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.5 0.826404 0.008188 True
Vb, eps=0.5 0.804569 0.00421 True

From the table above, we can apply the paired $t$-test for all cases.

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.05 -51.234782 0.0 14 True

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.1 -1.870801 0.082422 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.15 -2.175407 0.047225 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.2 -2.091689 0.055175 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.25 -1.32301 0.207035 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.3 0.183184 0.85728 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.35 -2.43199 0.029032 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.4 -0.926886 0.36969 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.45 -1.395933 0.184479 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.5 -0.219458 0.829461 14 False

We see the significant difference only if $\varepsilon=0.05$.

The effect of $\varepsilon$ on mdb

Out[41]:
Text(0, 0.5, 'mdb')
No description has been provided for this image

The effect of $\varepsilon$ on ngo

It is expected that something similar can be observed for ngo.

Out[43]:
min mean std max
eps
0.05 6 6.4 0.498273 7
0.10 5 5.5 0.508548 6
0.15 3 3.7 0.534983 5
0.20 2 3.333333 0.546672 4
0.25 2 2.866667 0.628810 4
0.30 2 2.366667 0.556053 4
0.35 2 2.333333 0.479463 3
0.40 2 2.3 0.466092 3
0.45 1 2.2 0.484234 3
0.50 2 2.433333 0.504007 3

Experiments except for the following one end with a single community (i.e., no segregation).

Out[44]:
init eps seed value mdo ngo ano mdb ngb anb
578-0.45-15596-a 578 0.45 15596 a 0.0 1 0.0 0 1 0.0
No description has been provided for this image

There are more groups compared with before if $0.05<\varepsilon$. This coincides with what is observed in the previous section.

In most of the cases, ano is larger than what is observed in the previous experiment. However, this is not the case for $\varepsilon=0.05$.

The example of evolution of opinions when $\varepsilon=0.05$:

No description has been provided for this image

The same example but when $\varepsilon=0.1$:

No description has been provided for this image

Statistical tests: between H0 and H2

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
H2 0.816818 0.0 True
H0 0.770664 0.0 True

From the table above, we can apply the paired $t$-test since both follow normal distributions.

Result from the paired $t$-test

statistic pvalue df significant?
H0 and H2 14.147053 0.0 299 True

We see the significant differences.

Statistical tests: between $V_a$ and $V_b$

We perform the same analysis to see the difference between two cultural values.

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va 0.800877 0.0 True
Vb 0.824208 0.0 True

From the table above, we can apply the paired $t$-test.

Result from the paired $t$-test

statistic pvalue df significant?
Va and Vb -2.230373 0.027217 149 False

We do not see the significant differences.

We perform the same analysis for each $\varepsilon$.

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.05 0.603427 0.000027 True
Vb, eps=0.05 0.643408 0.000066 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.1 0.630341 0.000049 True
Vb, eps=0.1 0.630341 0.000049 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.15 0.630341 0.000049 True
Vb, eps=0.15 0.530382 0.000006 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.2 0.694143 0.000215 True
Vb, eps=0.2 0.643408 0.000066 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.25 0.560898 0.000011 True
Vb, eps=0.25 0.822651 0.007289 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.3 0.743633 0.000758 True
Vb, eps=0.3 0.499444 0.000003 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.35 0.499444 0.000003 True
Vb, eps=0.35 0.643408 0.000066 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.4 0.603427 0.000027 True
Vb, eps=0.4 0.560898 0.000011 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.45 0.694143 0.000215 True
Vb, eps=0.45 0.560898 0.000011 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.5 0.643408 0.000066 True
Vb, eps=0.5 0.603427 0.000027 True

The tables above show that we can apply the paired $t$-test for all of the cases.

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.05 -0.564076 0.581627 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.1 -1.145644 0.271149 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.15 -4.582576 0.000426 14 True

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.2 -2.44949 0.028071 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.25 -1.074541 0.300751 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.3 1.43486 0.173288 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.35 -1.739835 0.103814 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.4 0.434959 0.670222 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.45 -0.619324 0.545651 14 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.5 1.145644 0.271149 14 False

If it is checked for each $\varepsilon$, there are the significant differences if $\varepsilon=0.15$.

The effect of $\varepsilon$ on ano

No description has been provided for this image

The following heatmap shows the average ano when experiments are aggregated with $\varepsilon$ and ngo.

Out[56]:
ngo 1 2 3 4 5 6 7
eps              
0.050000 nan nan nan nan nan 6.555556 8.071429
0.100000 nan nan nan nan 2.240000 3.077778 nan
0.150000 nan nan 1.066667 1.552632 2.800000 nan nan
0.200000 nan 1.500000 1.185185 1.840909 nan nan nan
0.250000 nan 1.062500 1.166667 2.250000 nan nan nan
0.300000 nan 0.600000 1.481481 3.250000 nan nan nan
0.350000 nan 0.725000 1.700000 nan nan nan nan
0.400000 nan 1.047619 1.925926 nan nan nan nan
0.450000 0.000000 1.431818 2.571429 nan nan nan nan
0.500000 nan 1.294118 3.307692 nan nan nan nan

The same plot can be generated by excluding results from the experiments which yields the single community:

No description has been provided for this image

For $\varepsilon\leq 0.2$, we can observe less segregated network. For example, when $\varepsilon=0.15$:

No description has been provided for this image
No description has been provided for this image

The final distribution of opinions is as follows:

Out[60]:
(array([ 0.,  0.,  0.,  0.,  0., 54.,  0.,  0.,  0.,  0.,  6.,  0.,  0.,
         0., 20.,  1.,  0.,  0.,  0., 19.]),
 array([0.  , 0.05, 0.1 , 0.15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 ,
        0.55, 0.6 , 0.65, 0.7 , 0.75, 0.8 , 0.85, 0.9 , 0.95, 1.  ]),
 <BarContainer object of 20 artists>)
No description has been provided for this image

For example, it is difficult for agents whose opiinons are between $0.5$ and $0.55$ to follow other concordant agents because such agents are rare in this example.

Following list shows the direct edges between different communities:

Out[61]:
[(19, 82),
 (19, 31),
 (19, 90),
 (21, 88),
 (65, 4),
 (65, 82),
 (83, 48),
 (83, 30),
 (83, 36)]

For example, agent 19's neighbors and their opinions and beliefs are:

82 10000000 1.0
76 00001001 0.5
31 10000000 1.0
90 00000001 0.2857142859

The output above shows the id of the neighbors, their beliefs (represented as 8-bit integers), and their opinions, respectively.

And agent 19 has:

00001001 0.5

Thus there are no concordant neighbors for the agent.

In most of the interactions it also did not have such neighbors:

$t=0$

82 11001011 0.919143
76 00111001 0.661104
31 11010001 0.816683
90 00000001 0.319455
19 00001111 0.492748

$t=5$

82 10001010 0.974435
76 00001101 0.520551878
31 10000001 0.982835346
90 00000001 0.2813542389
19 00001111 0.498187

$t=10$

82 10001010 0.9922710625
76 00001101 0.5203731909
31 10000001 0.9868422784
90 00000001 0.2856339098
19 00001111 0.499773375

$t=15$

82 10001010 0.9990867174
76 00001001 0.5055382879
31 10000001 0.99920724
90 00000001 0.286472618
19 00001111 0.4998866875

$t=20$

82 10000000 0.9905450484
76 00001001 0.4998478446
31 10000001 0.9999001052
90 00000001 0.2861080019
19 00001111 0.4999716719

$t=25$

82 10000000 0.9879790661
76 00001001 0.4993693243
31 10000001 0.9999907692
90 00000001 0.2858608647
19 00001111 0.499992918

$t=30$

82 10000000 0.9877782115
76 00001001 0.4993446723
31 10000001 0.9999979818
90 00000001 0.2857812128
19 00001111 0.499996459

$t=35$

82 10000000 0.9877598508
76 00001001 0.4993399099
31 10000001 0.9999989292
90 00000001 0.2857337938
19 00001111 0.4999982295

$t=40$

82 10000000 0.9877628396
76 00001001 0.4993389406
31 10000000 0.9999720477
90 00000001 0.2857215705
19 00001111 0.4999995574

$t=45$

82 10000000 0.9877530586
76 00001001 0.4993386047
31 10000000 0.9993905472
90 00000001 0.2857153739
19 00001111 0.4999997787

$t=50$

82 10000000 0.9918661314
76 00001001 0.4993386082
31 10000000 0.9996273562
90 00000001 0.2857145709
19 00001111 0.4999999724

$t=55$

82 10000000 0.9919366322
76 00001001 0.4993386191
31 10000000 0.9998529895
90 00000001 0.28571432
19 00001111 0.4999999931

$t=60$

82 10000000 0.9967395169
76 00001001 0.4993386239
31 10000000 0.9998750088
90 00000001 0.2857142961
19 00001111 0.4999999996

$t=65$

82 10000000 0.9997389635
76 00001001 0.4996150587
31 10000000 0.999930322
90 00000001 0.2857142876
19 00001111 0.5

$t=70$

82 10000000 0.9999144464
76 00001001 0.4999249676
31 10000000 0.9999734303
90 00000001 0.2857142863
19 00001111 0.5

$t=75$

82 10000000 0.9999921431
76 00001001 0.499992938
31 10000000 0.9999948378
90 00000001 0.2857142861
19 00001111 0.5

$t=80$

82 10000000 0.999997466
76 00001001 0.499997727
31 10000000 0.9999987594
90 00000001 0.2857142861
19 00001001 0.4999994318

$t=85$

82 10000000 0.9999998751
76 00001001 0.4999997571
31 10000000 0.9999998041
90 00000001 0.2857142859
19 00001001 0.4999997492

$t=90$

82 10000000 0.9999999721
76 00001001 0.4999999502
31 10000000 0.9999999558
90 00000001 0.2857142859
19 00001001 0.4999999441

$t=95$

82 10000000 0.999999994
76 00001001 0.4999999824
31 10000000 0.9999999926
90 00000001 0.2857142859
19 00001001 0.4999999736

For $0.2<\varepsilon$, we can observe more segregated network (such plot is generated when $\varepsilon=0.15$ for example in H0). For example, when $\varepsilon=0.3$:

No description has been provided for this image

Statistical tests: between H0 and H2

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
H2 0.823248 0.0 True
H0 0.687219 0.0 True

The table above shows that ano from the experiments for H0 and H2 follow normal distributions. Thus we can apply the paired $t$-test:

Result from the paired $t$-test

statistic pvalue df significant?
11.253619 0.0 299 True

Significant differences are observed.

Statistical tests: between $V_a$ and $V_b$

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va 0.83132 0.0 True
Vb 0.82498 0.0 True

Result from the paired $t$-test

statistic pvalue df significant?
-3.539118 0.000536 149 True

Again we see the statistical difference.

We perform the same analysis for each $\delta$.

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.05 0.950111 0.5262 False
Vb, eps=0.05 0.965962 0.794417 False

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.1 0.957479 0.648692 False
Vb, eps=0.1 0.955905 0.621677 False

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.15 0.936537 0.340811 False
Vb, eps=0.15 0.897732 0.087884 False

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.2 0.85387 0.01971 False
Vb, eps=0.2 0.946842 0.476157 False

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.25 0.876105 0.041519 False
Vb, eps=0.25 0.93769 0.354207 False

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.3 0.832444 0.009893 True
Vb, eps=0.3 0.827646 0.008511 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.35 0.790524 0.002786 True
Vb, eps=0.35 0.898711 0.090956 False

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.4 0.743472 0.000755 True
Vb, eps=0.4 0.822397 0.007232 True

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.45 0.921533 0.203283 False
Vb, eps=0.45 0.868149 0.031697 False

Normality test with the Shapiro-Wilk test

statistic pvalue significant?
Va, eps=0.5 0.938548 0.364462 False
Vb, eps=0.5 0.912259 0.146652 False

From the tables above, ano from the experiment follow if $\delta\in\{0.3,0.4\}$. Thus, we will apply the paired $t$-test for these two $\delta$ and the Wilcoxon signed-rank test otherwise.

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "

eps == 0.05 with the Wilcoxon signed-rank test

statistic pvalue significant?
0 19.0 0.035419 False

eps == 0.1 with the Wilcoxon signed-rank test

statistic pvalue significant?
0 36.0 0.187622 False

eps == 0.15 with the Wilcoxon signed-rank test

statistic pvalue significant?
0 48.5 0.524475 False

eps == 0.2 with the Wilcoxon signed-rank test

statistic pvalue significant?
0 39.5 0.25238 False

eps == 0.25 with the Wilcoxon signed-rank test

statistic pvalue significant?
0 30.0 0.094604 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.3 -0.297309 0.770596 14 False
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "

eps == 0.35 with the Wilcoxon signed-rank test

statistic pvalue significant?
0 34.0 0.244912 False

Result from the paired $t$-test

statistic pvalue df significant?
eps == 0.4 -0.857245 0.405745 14 False
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "

eps == 0.45 with the Wilcoxon signed-rank test

statistic pvalue significant?
0 38.5 0.624489 False

eps == 0.5 with the Wilcoxon signed-rank test

statistic pvalue significant?
0 52.5 0.678772 False

But for pairwise, we do not see...

This file can be retrieved from URL https://sake.re/20241211-BROD