Experiment 20241212-BROD

Experiment design

Date: 2025-01-14

Designer: Hiro KATAOKA (University of Tsukuba)

Hypotheses: Echo chambers are reinforced with opinions-beliefs interactions and fixed threshould for opinions

100 agents; 1 runs; 500 games

Variables

fixed variables: WORKFLOW TOPIC ATOM EPSILON PACTIVE PREWRITE NBITERATIONS NBAGENTS NBRUNS ALPHA MU REWRITE PREHOC

controled variables: DELTAS SEEDS INITS VALUES

dependent variables: mdo mdb ngo ngb ano anb

Values

DELTAS: 1 2 3 4 5 6 7
SEEDS: 15596 61362 11884 22766 45114
INITS: 1439 19602 578
VALUES: a b

Measures

Before verifing each hypotheses, we define the measures needed to check them. These measures are the same as 20241209-BROD and 20241210-bROD.

mdo (Maximal Distance between Opinions)

This measure shows the maximal distance between opinions: $$ \max_{a,a'\in A}|O_a-O_{a'}| $$ or equivalently, $$ \max_a O_a - \min_{a'} O_{a'}. $$

Intuitively, the more mdo is, the more polarized agents' opinions are.

mdb (Maximal Distance between Beliefs)

This measure shows the maximal distance between beliefs: $$ \max_{a,a'\in A}d(B_a,B_{a'}) $$ where $d$ is the Hamming distance between the sets of models $m$: $$ d(B,B')=|\{m;m\models B\oplus m\models B\}|, $$ with $\oplus$ as the exclusive or.

Intuitively, the more mdb is, the more polarized agents' beliefs are.

ngo (Number of Groups based on Opinions)

This measure shows the number of groups of agents based on opinions.

The $i$-th group $G_i$ is a nonempty subset of $A$ such that $G_i\cap G_j=\emptyset$ if $i\neq j$. Each $G_i$ can be defined by performing hierarchial clustering with complete linkage: two clusters $C$ and $C'$ are merged iff $$\max_{a\in C,a'\in C'}|O_a-O_{a'}|\leq 0.1$$

Intuitively, the more ngo is, the more polarized agents' opinions are.

ngb (Number of Groups based on Beliefs)

This measure shows the number of groups of agents based on opinions.

The $i$-th group $G_i$ is a nonempty subset of $A$ such that $G_i\cap G_j=\emptyset$ if $i\neq j$. Each $G_i$ can be defined as the maximal subset of $A$ such that all members share the same beliefs, i.e., $$ \forall i,\forall a,a'\in G_i,B_a\equiv B_{a'}. $$ Or equivalently, this measure can be calculated by $|\{B_a;a\in A\}|$.

Intuitively, the more ngb is, the more polarized agents' beliefs are.

ano (Average number of Neighbors over Opinions-based groups)

This measure shows the average number of neighbors in another communities. Let $G_1,\ldots,G_n$ be the groups based on opinions. Let $E(\subseteq A\times A)$ be the set of edges in the network agents form. Then, this measure is defined as follows: $$ \frac{1}{n}|\{(a,a')\in E; \exists ij.a\in G_i,a'\in G_j,i\neq j\}|. $$

Intuitively, the less ano is, the more segregated the network is.

anb (Average number of Neighbors over Beliefs-based groups)

This measure shows the average number of neighbors in another communities. Let $G_1,\ldots,G_n$ be the groups based on beliefs. Let $E(\subseteq A\times A)$ be the set of edges in the network agents form. Then, this measure is defined as follows: $$ \frac{1}{n}|\{(a,a')\in E; \exists ij.a\in G_i,a'\in G_j,i\neq j\}|. $$

Intuitively, the less anb is, the more segregated the network is.

Experiment

Date: 2025-01-14

Performer: Hiro KATAOKA (University of Tsukuba)

The whole experiment, from scratch, can be executed through:

In principle, this could be generated from command line through:

# only once, not checked in
$ bash utils/clone.sh 

# depends on ${HASH}, if it does not change, no need to recompile
# to compile a further version use 'last' as argument
$ bash utils/compile.sh

# generate the templates
$ bash utils/genTemplate.sh

# Perform experiments
$ bash script.sh

# The analysis is done through jupyter
$ jupyter notebook &
# Do not forget to trust the notebook

# Before commiting the notebook
$ nb-clean -e notebook.ipynb

# suppresses results and experiments
$ bash utils/cleanup.sh

# bash utils/anonymize.sh

Parameter file: params.sh

Executed command (script.sh):

#!/bin/bash

. params.sh

set -u
mkdir -p ${RESDIR}

# run

date > ${RESDIR}/log.txt

for init in ${INITS}
do
for delta in ${DELTAS}
do
for seed in ${SEEDS}
do
for value in ${VALUES}
do
EXP=${init}-${delta}-${seed}-${value}
mkdir -p ${RESDIR}/${EXP}

echo ${EXP}
${SIMDIR}/soba --seed ${seed} --dir "${RESDIR}/${EXP}" --nbAgent ${NBAGENTS} \
    --tick ${NBITERATIONS} --atoms ${ATOM} --update ${WORKFLOW} \
    --prehoc "${PREHOC}" --mu "${MU}" --alpha "${ALPHA}" --rewrite ${REWRITE} \
    --pUnfollow "${PREWRITE}" --pActive "${PACTIVE}" --epsilon "${EPSILON}"  \
	--delta ${delta} \
    --network """`cat ${TEMPLATEDIR}/graph-${init}.json`""" \
    --beliefs """`cat ${TEMPLATEDIR}/beliefs-${init}.json`""" \
    --opinions """`cat ${TEMPLATEDIR}/opinions-${init}.json`""" \
    --values """`cat ${TEMPLATEDIR}/val-${value}.json`""" \
    --topics "${TOPIC}"
done
done
done
done

date >> ${RESDIR}/log.txt

# analyse

Hardware: AMD EPYC 7302P, Memory 128GB

OS: Ubuntu 22.04.5 LTS x86_64

Nim version: 2.2.0

Simulator version: 747763f895c41497a0f7066177762ba2d7cb93ff

Duration and Output

  • Duration: 41 minutes
  • Output: 341 MB

Raw results

results/
  log.txt
results/1439-1-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-1-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-1-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-1-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-1-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-1-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-1-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-1-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-1-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-1-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-2-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-2-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-2-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-2-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-2-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-2-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-2-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-2-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-2-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-2-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-3-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-3-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-3-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-3-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-3-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-3-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-3-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-3-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-3-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-3-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-4-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-4-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-4-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-4-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-4-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-4-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-4-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-4-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-4-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-4-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-5-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-5-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-5-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-5-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-5-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-5-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-5-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-5-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-5-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-5-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-6-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-6-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-6-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-6-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-6-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-6-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-6-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-6-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-6-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-6-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-7-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-7-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-7-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-7-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-7-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-7-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-7-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-7-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-7-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/1439-7-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-1-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-1-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-1-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-1-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-1-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-1-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-1-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-1-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-1-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-1-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-2-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-2-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-2-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-2-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-2-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-2-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-2-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-2-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-2-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-2-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-3-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-3-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-3-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-3-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-3-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-3-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-3-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-3-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-3-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-3-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-4-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-4-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-4-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-4-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-4-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-4-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-4-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-4-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-4-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-4-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-5-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-5-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-5-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-5-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-5-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-5-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-5-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-5-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-5-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-5-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-6-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-6-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-6-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-6-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-6-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-6-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-6-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-6-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-6-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-6-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-7-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-7-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-7-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-7-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-7-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-7-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-7-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-7-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-7-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/19602-7-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-1-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-1-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-1-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-1-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-1-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-1-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-1-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-1-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-1-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-1-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-2-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-2-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-2-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-2-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-2-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-2-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-2-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-2-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-2-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-2-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-3-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-3-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-3-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-3-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-3-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-3-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-3-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-3-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-3-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-3-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-4-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-4-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-4-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-4-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-4-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-4-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-4-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-4-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-4-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-4-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-5-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-5-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-5-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-5-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-5-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-5-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-5-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-5-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-5-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-5-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-6-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-6-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-6-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-6-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-6-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-6-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-6-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-6-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-6-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-6-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-7-11884-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-7-11884-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-7-15596-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-7-15596-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-7-22766-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-7-22766-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-7-45114-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-7-45114-b/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-7-61362-a/
  grhist.csv
  belhist.csv
  ophist0.csv
results/578-7-61362-b/
  grhist.csv
  belhist.csv
  ophist0.csv

Analysis

Out[16]:
init delta seed value mdb ngb anb mdo ngo ano
1439-1-15596-a 1439 1 15596 a 8 25 4.76 0.714286 4 25.0
1439-1-15596-b 1439 1 15596 b 8 26 5.038462 0.714286 5 22.8
1439-1-61362-a 1439 1 61362 a 8 27 4.888889 0.714286 4 26.25
1439-1-61362-b 1439 1 61362 b 8 27 5.333333 0.714278 4 28.5
1439-1-11884-a 1439 1 11884 a 8 29 4.62069 0.714286 5 24.0
... ... ... ... ... ... ... ... ... ... ...
578-7-11884-b 578 7 11884 b 2 3 0.0 0.714286 3 0.0
578-7-22766-a 578 7 22766 a 2 2 0.0 0.428571 2 0.0
578-7-22766-b 578 7 22766 b 2 3 0.0 0.714286 3 0.0
578-7-45114-a 578 7 45114 a 2 3 0.0 0.571429 3 0.0
578-7-45114-b 578 7 45114 b 2 3 0.0 0.714286 3 0.0

210 rows × 10 columns

To compare with the results from experiments with $\varepsilon=1.0$, we load the analyzed data from H1 (20241210-BROD):

We will use $0.01$ as the significance level.

Effect of $\delta$ on mdb

First, we show the effect of $\delta$ on mdb.

No description has been provided for this image

For smaller $\delta$, the difference is small. For larger $\delta$, mdb is larger than the previous one.

Statistical tests: significance between H1 and H2

With the Shapiro-Wilk test, the measure mdb from experiments for H1 and H2 follows a normal distribution because the $p$-values are lower than 0.01.

statistic pvalue significant?
H2 0.798874 0.0 True
H1 0.77668 0.0 True

Thus we can perform paired $t$-test to see whether changing cultural values has an effect on mdb:

statistic pvalue df significant?
0 4.451905 0.000014 209 True

We see the significant difference between two experiments.

Statistical tests: significance between V1 and V2

With the Shapiro-Wilk test, the measure mdb from experiments which share the same values follows a normal distribution because the $p$-values are lower than 0.01.

statistic pvalue significant?
Va 0.788328 0.0 True
Vb 0.80833 0.0 True

Thus we perform the paired $t$-test:

statistic pvalue df significant?
0 -0.407687 0.684341 104 False

But we do not see the significance difference between them with respect to the significance level 0.01.

We test for each $\delta$:

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:1879: UserWarning: Input data for shapiro has range zero. The results may not be accurate.
  warnings.warn("Input data for shapiro has range zero. The results "
statistic pvalue significant?
Va, delta=1 1.0 1.0 False
Vb, delta=1 0.560898 0.000011 True
statistic pvalue significant?
Va, delta=2 0.790271 0.002765 True
Vb, delta=2 0.662888 0.000102 True
statistic pvalue significant?
Va, delta=3 0.715537 0.000366 True
Vb, delta=3 0.835869 0.011024 False
statistic pvalue significant?
Va, delta=4 0.788547 0.002631 True
Vb, delta=4 0.875932 0.041275 False
statistic pvalue significant?
Va, delta=5 0.499444 0.000003 True
Vb, delta=5 0.687647 0.000184 True
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:1879: UserWarning: Input data for shapiro has range zero. The results may not be accurate.
  warnings.warn("Input data for shapiro has range zero. The results "
statistic pvalue significant?
Va, delta=6 0.41281 0.000001 True
Vb, delta=6 1.0 1.0 False
statistic pvalue significant?
Va, delta=7 0.420896 0.000001 True
Vb, delta=7 0.284133 0.0 True

mdb from experiments which share $\delta$ and the same cultural values follow normal distributions if $\delta\in\{2,5,7\}$. Thus, we perform the paired $t$-test for these $\delta$ and the Wilcoxon signed-rank test otherwise.

delta=1, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 0.0 0.0455 False

delta=2, paired t-test

statistic pvalue df significant?
0 2.645751 0.019188 14 False

delta=3, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 4.5 0.195668 False

delta=4, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
statistic pvalue significant?
0 24.0 0.420596 False

delta=5, paired t-test

statistic pvalue df significant?
0 -1.7921 0.094748 14 False

delta=6, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 0.0 0.157299 False

delta=7, paired t-test

statistic pvalue df significant?
0 0.806947 0.433193 14 False

We perform the same analysis but always uses the Wilcoxon signed-rank test:

delta=1, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 0.0 0.0455 False

delta=2, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
statistic pvalue significant?
0 9.0 0.025538 False

delta=3, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 4.5 0.195668 False

delta=4, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
statistic pvalue significant?
0 24.0 0.420596 False

delta=5, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 5.5 0.075991 False

delta=6, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 0.0 0.157299 False

delta=7, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 1.5 0.414216 False

In both cases we do not see the significant difference.

Effect of $\delta$ on mdo

Out[33]:
<matplotlib.legend.Legend at 0x1208cf350>
No description has been provided for this image

Effect of $\delta$ on ngb

No description has been provided for this image

ngb is always larger than it from previous experiment.

Statistical test: between H1 and H2

From the Shapiro-Wilk test, ngb from experiments for H1 and H2 follow normal distributions.

statistic pvalue significant?
H2 0.661497 0.0 True
H1 0.662436 0.0 True

Thus we can perform the paired $t$-test:

statistic pvalue df significant?
0 16.872869 0.0 209 True

We see the significant difference.

Statistical test: between V1 and V2

From the Shapiro-Wilk test, ngb from experiments which share the same cultural values follow normal distributions.

statistic pvalue significant?
Va 0.676058 0.0 True
Vb 0.643827 0.0 True

Thus we can perform the paired $t$-test:

statistic pvalue df significant?
0 -0.997215 0.320975 104 False

The result shows that we do not see the significant difference.

Same analysis for each $\delta$:

statistic pvalue significant?
Va, delta=1 0.965258 0.782712 False
Vb, delta=1 0.92118 0.200777 False
statistic pvalue significant?
Va, delta=2 0.937874 0.356389 False
Vb, delta=2 0.947277 0.482634 False
statistic pvalue significant?
Va, delta=3 0.83794 0.011774 False
Vb, delta=3 0.932354 0.295808 False
statistic pvalue significant?
Va, delta=4 0.782955 0.00224 True
Vb, delta=4 0.79911 0.003581 True
statistic pvalue significant?
Va, delta=5 0.753806 0.000996 True
Vb, delta=5 0.743633 0.000758 True
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:1879: UserWarning: Input data for shapiro has range zero. The results may not be accurate.
  warnings.warn("Input data for shapiro has range zero. The results "
statistic pvalue significant?
Va, delta=6 0.284134 0.0 True
Vb, delta=6 1.0 1.0 False
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:1879: UserWarning: Input data for shapiro has range zero. The results may not be accurate.
  warnings.warn("Input data for shapiro has range zero. The results "
statistic pvalue significant?
Va, delta=7 0.631344 0.00005 True
Vb, delta=7 1.0 1.0 False

From the table above which shows the results from the Shapiro-Wilk test, we use the paired $t$-test for $\delta\in\{4,5\}$ and the Wilcoxon signed-rank test otherwise.

delta=1, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
statistic pvalue significant?
0 34.5 0.253755 False

delta=2, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
statistic pvalue significant?
0 30.0 0.787197 False

delta=3, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
statistic pvalue significant?
0 27.0 0.189295 False

delta=4, paired t-test

statistic pvalue df significant?
0 -1.074541 0.300751 14 False

delta=5, paired t-test

statistic pvalue df significant?
0 -2.167632 0.047915 14 False

delta=6, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 0.0 0.317311 False

delta=7, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 2.0 0.563703 False

The same analysis but always uses the Wilcoxon signed-rank test:

delta=1, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
statistic pvalue significant?
0 34.5 0.253755 False

delta=2, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
statistic pvalue significant?
0 30.0 0.787197 False

delta=3, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
statistic pvalue significant?
0 27.0 0.189295 False

delta=4, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
statistic pvalue significant?
0 22.0 0.285049 False

delta=5, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
statistic pvalue significant?
0 10.0 0.052204 False

delta=6, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 0.0 0.317311 False

delta=7, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 2.0 0.563703 False

These tables show that we cannot observe the significant difference.

Effect of $\delta$ on ngo

Out[42]:
<matplotlib.legend.Legend at 0x12acb4620>
No description has been provided for this image

Effect of $\delta$ on anb

No description has been provided for this image

Excluding data from experiments which end with a single community yields the plot below:

No description has been provided for this image

Here, anb is always lower on average than it from the experiments for H1.

Statistical tests: between H1 and H2

From the Shapiro-Wilk test, anb from the experiments for H1 and H2 follows normal distributions.

statistic pvalue significant?
H2 0.873635 0.0 True
H1 0.852244 0.0 True

Thus we can perform the paired $t$-test:

statistic pvalue df significant?
0 -1.616351 0.107527 209 False

We see the significant difference.

Statistical tests: between V1 and V2

From the Shapiro-Wilk test, anb from the experiments which share the same cultural values follows normal distributions.

statistic pvalue significant?
Va 0.867006 0.0 True
Vb 0.867745 0.0 True

Thus we can perform the paired $t$-test:

statistic pvalue df significant?
0 -0.673449 0.502156 104 False

Thus we cannot conclue that changing value has an effect on anb.

Next we perform the same analysis for $\delta$-wise:

statistic pvalue significant?
Va, delta=1 0.910263 0.136673 False
Vb, delta=1 0.942546 0.415464 False
statistic pvalue significant?
Va, delta=2 0.932641 0.298724 False
Vb, delta=2 0.963866 0.759186 False
statistic pvalue significant?
Va, delta=3 0.808802 0.004779 True
Vb, delta=3 0.948824 0.50613 False
statistic pvalue significant?
Va, delta=4 0.890631 0.06855 False
Vb, delta=4 0.927795 0.252871 False
statistic pvalue significant?
Va, delta=5 0.69281 0.000208 True
Vb, delta=5 0.815851 0.005916 True
statistic pvalue significant?
Va, delta=6 0.771088 0.001602 True
Vb, delta=6 0.486839 0.000003 True
statistic pvalue significant?
Va, delta=7 0.70682 0.000294 True
Vb, delta=7 0.523337 0.000005 True

From the table above, we use the paired $t$-test for $\delta\in\{5,6,7\}$ and the Wilcoxon signed-rank test otherwise:

delta=1, Wilcoxon signed-rank test

statistic pvalue significant?
0 0.0 0.000061 True

delta=2, Wilcoxon signed-rank test

statistic pvalue significant?
0 52.0 0.678772 False

delta=3, Wilcoxon signed-rank test

statistic pvalue significant?
0 49.5 0.599487 False

delta=4, Wilcoxon signed-rank test

statistic pvalue significant?
0 40.5 0.276855 False

delta=5, paired t-test

statistic pvalue df significant?
0 -1.348361 0.198953 14 False

delta=6, paired t-test

statistic pvalue df significant?
0 0.372925 0.71479 14 False

delta=7, paired t-test

statistic pvalue df significant?
0 0.765457 0.456711 14 False

The same analysis but always uses the Wilcoxon signed-rank test yields the following table:

delta=1, Wilcoxon signed-rank test

statistic pvalue significant?
0 0.0 0.000061 True

delta=2, Wilcoxon signed-rank test

statistic pvalue significant?
0 52.0 0.678772 False

delta=3, Wilcoxon signed-rank test

statistic pvalue significant?
0 49.5 0.599487 False

delta=4, Wilcoxon signed-rank test

statistic pvalue significant?
0 40.5 0.276855 False

delta=5, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
statistic pvalue significant?
0 21.0 0.157459 False

delta=6, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 18.0 0.590014 False

delta=7, Wilcoxon signed-rank test

/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4088: UserWarning: Exact p-value calculation does not work if there are zeros. Switching to normal approximation.
  warnings.warn("Exact p-value calculation does not work if there are "
/Users/azumabashi/.anyenv/envs/pyenv/versions/3.12.0/lib/python3.12/site-packages/scipy/stats/_morestats.py:4102: UserWarning: Sample size too small for normal approximation.
  warnings.warn("Sample size too small for normal approximation.")
statistic pvalue significant?
0 14.0 0.574934 False

In both cases we cannot conclude that changing values has the significant effect on anb in general. We can observe the effect only if $\delta=1$.

Effect of $\delta$ on ano

Out[52]:
<matplotlib.legend.Legend at 0x12ae4cf50>
No description has been provided for this image

This file can be retrieved from URL https://sake.re/20241212-BROD